京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:麦叔编程
作者:麦叔
对于Python学习者,一旦过了入门阶段,你几乎一定会用到Python的装饰器。
它经常使用在很多地方,比如Web开发,日志处理,性能搜集,权限控制等。
还有一个极其重要的地方,那就是面试的时候。对,装饰器是面试中最常见的问题之一!
抛出问题
看这段代码:
def step1(): print('step1.......') def step2(): print('step2......') def step3(): print('step3......')
step1()
step2()
step3()
代码中定义了3个函数,然后分别调用这3个函数。假设,我们发现代码运行很慢,我们想知道每个函数运行分别花了多少时间。
我们可以在每个函数中添加计时的代码:
下面的例子只在step1中添加了相关代码作为示例,你可以自行给step2和step3添加相关代码。
import time def step1(): start = time.time()
print('step1.......')
end = time.time()
used = end - start
print(used) def step2(): print('step2......') def step3(): print('step3......')
step1()
step2()
step3()
这个方法可行!但用你的脚指头想想也会觉得,这个方法很繁琐,很笨拙,很危险!
这里只有3个函数,如果有30个函数,那不是要死人啦。万一修改的时候不小心,把原来的函数给改坏了,面子都丢光了,就要被人BS了!
一定有一个更好的解决方法!
更好的解决方法是使用装饰器。
装饰器并没有什么高深的语法,它就是一个实现了给现有函数添加装饰功能的函数,仅此而已!
import time def timer(func): '''统计函数运行时间的装饰器''' def wrapper(): start = time.time()
func()
end = time.time()
used = end - start
print(f'{func.__name__} used {used}')
return wrapper def step1(): print('step1.......') def step2(): print('step2......') def step3(): print('step3......')
timed_step1 = timer(step1)
timed_step2 = timer(step2)
timed_step3 = timer(step3)
timed_step1()
timed_step2()
timed_step3()
上面的timer函数就是个装饰器。
简单说就是把原来的函数给包了起来,在不改变原函数代码的情况下,在外面起到了装饰作用,这就是传说中的装饰器。它其实就是个普通的函数。
如果你觉得有点懵逼,需要加强一些对Python函数的理解。函数:
可以作为参数传递
可以作为返回值
也可以定义在函数内部
然后,我们不再直接调用step1, 而是:
timed_step1 = timer(step1) timed_step1()
简洁点,也可以这样写:
timer(step1)() timer(step2)() timer(step3)()
这样可以在不修改原有函数代码的情况下,给函数添加了装饰性的新功能。
但是仍然需要修改调用函数的地方,看起来还不够简洁。有没有更好的办法呢?当然是有的!
我们可以在被装饰的函数前使用@符号指定装饰器。这样就不用修改调用的地方了,这个世界清净了。下面的代码和上一段代码功能一样。在运行程序的时候,Python解释器会根据@标注自动生成装饰器函数,并调用装饰器函数。
import time def timer(func): '''统计函数运行时间的装饰器''' def wrapper(): start = time.time()
func()
end = time.time()
used = end - start
print(f'{func.__name__} used {used}')
return wrapper @timer def step1(): print('step1.......') @timer def step2(): print('step2......') @timer def step3(): print('step3......')
step1()
step2()
step3()
到了这里,装饰器的核心概念就讲完了。
剩下的基本都是在不同场合下的应用。如果你是大忙人,不想学的太深,可以搜藏本文章,以后再回来看。
上面是一个最简单的例子,被装饰的函数既没有参数,也没有返回值。下面来看有参数和返回值的情况。
我们把step1修改一下,传入一个参数,表示要走几步。
import time def timer(func): '''统计函数运行时间的装饰器''' def wrapper(): start = time.time()
func()
end = time.time()
used = end - start
print(f'{func.__name__} used {used}')
return wrapper @timer def step1(num): print(f'我走了#{num}步')
step1(5)
再去运行,就报错了:
TypeError: wrapper() takes 0 positional arguments but 1 was given
这是因为,表面上我们写的是step1(5),实际上Python是先调用wrapper()函数。这个函数不接受参数,所以报错了。
为了解决这个问题,我们只要给wrapper加上参数就可以。
import time def timer(func): '''统计函数运行时间的装饰器''' def wrapper(*args, **kwargs): start = time.time()
func(*args, **kwargs)
end = time.time()
used = end - start
print(f'{func.__name__} used {used}')
return wrapper
如果被装饰的函数func有返回值,wrapper也只需把func的返回值返回就可以了。
import time def timer(func): '''统计函数运行时间的装饰器''' def wrapper(*args, **kwargs): start = time.time()
ret_value = func(*args, **kwargs)
end = time.time()
used = end - start
print(f'{func.__name__} used {used}')
return ret_value
return wrapper @timer def add(num1, num2): return num1 + num2
sum = add(5, 8)
print(sum)
这里我新加了一个add函数,计算两个数之和。
在wrapper函数中,我们先保存了func的返回值到ret_value,然后在wrapper的最后返回这个值就可以了。
到这里,你又进了一步,你可以击败88.64%的Python学习者了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23