京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:麦叔编程
作者:麦叔
面向对象是所有高级语言(Python,Java,C++等)的基石,是重中之重。
这个文章系列的目的是通过简单易懂的例子,深入浅出,让Python学习者牢固地掌握Python面向对象的概念和方法。
本系列包括:
看这张图:
动物界具有天然的继承关系,人类也是,我们一代代继承下来。继承了前辈们的属性和能力,又发展了自己独特的属性和能力。
在图中的例子,我们如何在程序中表示普通的狗,牧羊犬,警犬等呢?
我们可以把detect(), protect()等函数和属性直接加在Dog里面,但这并不合理,因为并不是所有的狗可以侦查,并不是所有的狗都可以保护养。
正确的做法是创建新的类,这些新的类继承Dog类:
在这里Dog被称为父类,SheepDog等被称为子类。
子类会自动拥有父类的属性和方法,自己也可以添加自己的独特属性和方法。
现在来定义SheepDog。先看看我们原来的Dog类:
#类是一个模板 class Dog: num_of_dogs = 0 # 类属性 police_height = 60 #构造方法 - 添加实例属性,做其他的初始化工作 def __init__(self, name, height, power):
self.name = name
self.height = height
self.power = power
self.blood = 10 print(f"{self.name}出生了,汪汪!")
Dog.num_of_dogs += 1
#狗叫 def bark(self):
print(f'我是{self.name},汪汪汪!')
class SheepDog(Dog): '''牧羊犬,包括名字,高度,攻击力和能看护的养的个数''' def __init__(self, name, height, power, num_of_sheeps): super().__init__(name, height, power)
self.num_of_sheeps = num_of_sheeps
仔细阅读上面的代码,观察它的特点:
SheepDog(Dog) 这种写法:括号中的Dog表示Dog是SheepDog的父类。
我们定义Dog的时候没有括号,表示它没有父类(实际上它默认继承了Object类)。
子类的使用和父类是一样的:
sd1 = SheepDog('大黄', 67, 88, 10)
print(f'名字:{sd1.name}')
print(f'血量:{sd1.blood}')
print(f'高度:{sd1.power}')
sd1.bark()
我们给SheepDog添加它的独特方法protect():
class SheepDog(Dog): '''牧羊犬,包括名字,高度,攻击力和能看护的养的个数''' def __init__(self, name, height, power, num_of_sheeps): super().__init__(name, height, power)
self.num_of_sheeps = num_of_sheeps
def protect(self): print('我开始保护小羊啦!')
调用一下试试看:
sd1 = SheepDog('大黄', 67, 88, 10) sd1.protect()
因为继承的关系,SheepDog直接就有bark()方法,这是从父类继承过来的。
假设牧羊犬的叫声和普通叫声是不一样的,我们在子类中覆盖父类中的方法:
class SheepDog(Dog): '''牧羊犬,包括名字,高度,攻击力和能看护的养的个数''' def __init__(self, name, height, power, num_of_sheeps): super().__init__(name, height, power)
self.num_of_sheeps = num_of_sheeps
def protect(self): print('我开始保护小羊啦!')
def bark(self): print('我是牧羊犬,我骄傲!')
这时候再调用bark()方法就会使用子类中定义的方法:
sd1 = SheepDog('大黄', 67, 88, 10) sd1.bark()
打印的结果是:
我是牧羊犬,我骄傲!
类的继承和对父类方法的覆盖在代码设计中很有用。假设有个程序的界面是这样的:
按钮就是一个类,比如叫做Button。
为了实现不同的皮肤,我们可以写一个类继承Button类,假设就叫做MyButton吧,子类自动拥有了父类的属性和函数,但是我们可以覆盖某些函数,让他拥有不同的皮肤,甚至不同的行为。
面向对象的核心知识到这里就更新完了,最后奉上Dog版本的吃鸡游戏。这个游戏包含两个类:
dog.py
#2种狗具有不同的攻击力和防御能力。攻击强的防御弱;反之亦然; import random class Dog: dogs = [] #保存所有活着的Dog def __init__(self, name):
self.name = name
self.blood = 100 self.attack_power = 5 self.defense_power = 3 #攻击! def attack(self, dog2):
print(f'{self.name}攻击{dog2.name},攻击力:{self.attack_power},防御力:{dog2.defense_power}')
point = self.attack_power - dog2.defense_power
if(dog2.blood > point):
dog2.blood -= point
print(f'{dog2.name}受到攻击,奋力自救,血量减少为{dog2.blood}')
else: dog2.blood = 0 print(f'{dog2.name}受到攻击,失血过多,死亡!')
Dog.dogs.remove(dog2)
#判定狗的类型 def dog_type(self):
if(isinstance(self, SheepDog)):
return '牧羊犬' elif(isinstance(self, PoliceDog)):
return '警犬' else: return '普通犬' #牧羊犬 class SheepDog(Dog): def __init__(self, name):
super().__init__(name)
self.attack_power = random.randint(5, 10)
self.defense_power = random.randint(3,5)
print('牧羊犬{self.name}问世!')
self.dogs.append(self) #警犬 class PoliceDog(Dog): def __init__(self, name):
super().__init__(name)
self.attack_power = random.randint(8, 13)
self.defense_power = random.randint(1,3)
print('♀️警犬{self.name}问世!')
self.dogs.append(self)
game.py
#1. 首先创建100个Dog, 50个SheepDog, 50个PoliceDog #2. 每一轮游戏,随机选出2个Dog #3. dog1先攻击dog2,然后dog2攻击dog1 #3. 任何一方血量变为0就表明死亡!死亡的Dog退出游戏。 #4. 最后只有一个Dog了,游戏结束,胜利者可以吃鸡。 from dog import * import random #产生随机数字 import time #时间模块 #1.创建100条狗 for i in range(100):
if(i%2==0):
SheepDog(i+1) #创建1个牧羊犬 else:
PoliceDog(i+1) #创建1个警犬 #2. 开始游戏循环 while(True):
#判断是否只有1个Dog if(len(Dog.dogs) == 1):
winner = Dog.dogs[0]
print('')
print('大吉大利,今晚吃鸡!')
print(f'赢家是:{winner.dog_type()} {winner.name}')
print('')
break dog1, dog2 = random.sample(Dog.dogs, 2)
dog1.attack(dog2)
dog2.attack(dog1)
time.sleep(0.02)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26