京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源: 麦叔编程
作者:麦叔
很多在校生或者自学编程的人表示:我没有项目经验,应该怎么办?
在开源盛行的今天,我们根本不缺乏项目,随便在Github上搜索一下就可以找到成千上万的高质量的项目供你学习和实践。
我们缺乏的是:把开源项目内化的方法,让开源项目变成自己的项目的例子。
本文分享6个内化开源项目的步骤,以及4个加深项目经验的步骤。如果你认真执行这些步骤,项目经验将不再是问题。
一、步子大了容易扯着蛋
这里说的项目是指比较综合的项目,具有一定商业价值的项目,写在简历上可以给你加分的项目,比如:
项目虽好,但我不推荐初学者上来就做这种项目,步子大了容易扯着蛋。
在做项目之前,必须先有一定的编程基础:
否则就算你比着葫芦画瓢把项目运行出来了,项目随便出点问题,你就傻眼了,因为一些基础的知识你都不懂。或者让你做点复杂点的功能,完全没有思路。
所以在实践本文的步骤之前,先掂量一下,自己是否已经有了一定的基础。
并不是说从零开始学习编程就不能实战入门,相反,我非常推崇实战项目入门的方法,所以我在B站分享很多Python,Java的小游戏,小项目的教程:
这些都很适合零基础学习编程,但如果放在简历上就太单薄了。
在B站搜索:麦叔编程,可以查看这些视频。公众号在近期也会开通相关的小程序。
在接下来两周,我会发布学习文章,也是防止扯了蛋:
请保持关注。
如果你已经有了一定的基础,就可以开始找个开源项目,练练手。
找项目的方法很简单,可以去github,或者国内的gitee上,搜索你感兴趣的项目,挑选点赞数比较多的就可以了。
但这里我想提醒一下,一定要循序渐进,找适合自己的项目,并不是点赞多的就是最开始学习。
以Java开源项目为例,我认为要分成几个层次:
再说一遍,我的主要意思是:要循序渐进,找适合自己的项目。
如果你不知道如何循序渐进,在接下来的一两周之内我会发布:
请保持关注。
假设你已经确定了一个开源项目,怎么下手呢?
按照下面的6个步骤来:
架构图示例:
流程图示例:
经过这样的6个步骤,你一定有信心把项目写到自己的简历上。实际上,你可能会比真正有工作经验的人还要表现的好。
我见过很多工作了几年的人,都不能画出自己的项目的架构图,对项目需求一知半解,问到点深入的问题就答不出来。如果你有实际的工作经验,也可以应用上面的几个步骤。
如果你觉得这个几个步骤很好,但还是感觉不知道怎么下手,在接下里一两周,我会选取一个开源项目,带你一步步实践上面的6个步骤。请保持关注。
经过上面的6个步骤,你的项目经验应该没问题了,但是你没有真正的在一个团队中工作过,你没有团队合作经验,这可能会是一个问题。
下面分享的4个步骤帮你获得团队合作经验:
如果你很难找到合作伙伴,我创建了一个“项目实战互助群”,也许这里你能找到你的合作伙伴。请在公众号回复项目加入群聊。
我知道,说起来容易,做起来难!但是不做会更难。
如果下决心,严格执行这些建议,项目经验绝对不会成为你的障碍。
为了更好的帮助大家,在下面的一两周我会推出相关的文章:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24