
从大数据走向大知识 大数据可以产生更多功能
大数据正在为人们的生活提供种种便利,关于大数据的讨论已经渗透经济、社会、生活各个领域,工程师们发现一个惊人的现实:大数据已经开始独立于人,在人类社会加自然界的二元空间之外,形成单独的信息空间。
在近日于北京举办的数字化知识服务科学与工程2015国际高端研讨会上,中国工程院院士潘云鹤表示:“50年以前人类还是二元空间,信息还依靠人来发出,信息来自于人类社会。人们写书、开会交流、使用媒体,计算机的信息都是人输进去的。后来人们开始把信息进行互联,有了互联网、移动通信和搜索技术,信息通过互联网来自于物理世界,去年相关调查发现,绝大部分网络上信息的流量不是被人所占用,而是被机器人所占用,这是非常令人惊讶的。”
大数据时代真的主打“数据”吗?许多国家开始着手对“数据”做文章。2001年中国政府和美国自然科学基金开始进入一项国际合作项目:数字图书馆,让所有人不论何时何地都能通过互联网访问到全人类的知识,这个项目一共实现了250万册图书的数字化。
“虽然项目一开始是为了向全世界提供图书和资料,但是后来发现不但可以借书,还可以有很多新的服务,比如,可以实现在网上访问名胜古迹,里面有敦煌石窟数字化三维造型。再比如,该项目把中国900多个书法家4000多件作品进行了数字化,因此可以帮助全世界学习汉语和书法的人练习书法,也可以进行书法的设计。”潘云鹤说,“我们发现海量数据如果能彼此打通,从中可以产生大量新知识,我们把彼此联通的海量知识称为数据海,图书馆如果拥有数据海的话就可能发展成为数字图书馆,就和原有的图书馆具有完全不同的性能”。
因此,大数据时代不是只主打一组组的数据,这些数据可以产生更多的功能,仅仅挖掘大数据是不够的,应该从大数据走向大知识。
在研讨会上,记者了解到浙江大学正在将中医大数据变为新的知识。他们把各种各样的方剂、疾病、医生、病人互相打通,将互联网、数字图书馆、专业数据联系起来,进行深度搜索。这样一来,既可以研究中药里某种化合物的成分,还可以对药材进行各种各样的鉴别,对药材如何组合进行分析,这对于医生探索新的药方有非常大的帮助。
正是基于大数据到大知识的探索,中国工程院在2014年成立了国际工程科技知识中心,希望把多个数字图书馆、专业数据库和世界上各种各样跟工程科技有关的网站连在一起,让大量的数据形成数据海,用数据海的特点从不同角度获得新的知识和新的认识。
潘云鹤说:“国际工程科技知识中心将为各个院士提供研究我国战略所需要的知识,中心发展到一定程度后向全体工程师们开放,让我国的工程师利用其开发新的产品,了解全世界在该领域的研究进程。此外,这个中心还要承担支持我国的产业转型的重任。”
中国工程院院长周济在研讨会上表示,大数据与智能终端、移动互联等相互结合,进一步推动了信息化和工业化的深度融合,进一步开拓了技术创新与经济发展的模式,进一步提升了政治统领和行业发展的决策科学化水平,我们正在经历新一轮以大数据为主的信息革命和产业变革。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29