京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在电子商务过程中你需要使用何种数据来衡量表现
你有一个在线的生意吗?如果你的企业需要衡量表现,不要被蒙在鼓里。
在线商业和传统生意相比主要的优势是每一个单块的数据都可以被衡量。但并不是很多在线零售商多从这一进步当中获利。这不只是说你需要安装网络分析工具,你还需要能够理解这些数据,并且做出可以执行的决策,来让你的在线商业获得成长。
在我们开始之前,你需要掌握的最重要的数据包括:你的商业目标是什么?你在今年,明年,未来三年或者更长时间想要达到的在线商业销售额是多少?如果你对此完全没有线索,你可以用至少十二个月的未来商业成长预测来作为开始。举例说,是环比增长20%还是同比增长25%?
一旦你设立商业目标,而且也明白你有多少预算,你就可以深入观测你数据的主要部分,并且致力于实现你的商业目标,最后当然可以获利。
关键度量
衡量你在线业务的所有数据并不难,每一件事都是用这个黄金公式来开始的。这用来判断在线营收的起源。
在线收入 = 独立访问量 (UV) X 转换率 (CVR) x 平均订购量 (AOV)
对于上面的方程来说很明显,你需要增加流量转化率,以及/或者平均订单量,来增加你的在线销售额。如果你接受线下付款,你还需要把付费率(PR)放到上面的方程中。
我们的推荐方法是,根据营销渠道的不同,来分解这个方程。像这样:
以上是一个例子,你需要包括商业模式当中所有可能的营销渠道,比如关联和参考系等等。你完全可以进一步分解营销渠道,比如比起仅仅分类为社交网络,可以将它们分解到微博、微信等不同的特殊渠道。
丢弃率
如果你的转化率 (CVR)不尽如人意的话,有一个特别重要的衡量标准就是丢弃率(abandonment rate)。
我们在这里并不仅仅谈论把购物车中的东西放弃购买。你需要从着陆页开始就开始测量。这是你的首页,活动专门页面或者其他任何一个消费者可能首次登陆你在线网站的页面。
然后请测量你的着陆页当中的回弹率(bounce rate)。人们在到达你的网站之后是离开了,还是访问站内其他网页?这可能甚至都不包括将产品放入购物车。而且你需要知道为什么发生了这些?这可能是因为你的营销渠道,让着陆之后的用户来到了错误的地方吗?你需要继续优化你的着陆页吗?
自然,衡量购物车丢弃率(shopping cart abandonment rate)是同等重要的,如果十个访问者中有九个人在选购一些东西之后没有付款就走掉了,事情就很糟糕。尤其是如果你投资,希望他们首先能够到达你网站的情况下。
你不仅需要通过购物车检验程序,在技术上优化你的购物车环节,还有一件事也很重要,就是明白什么样的产品具有高的丢弃率。还有,最好给你的顾客打电话,问一问他们为什么离开。
获得消费者的支出
除非你通过搜索引擎优化(SEO)已经能够稳定地获得来自网站的流量——当然不是通过付费搜索,你就需要投入一笔必要的资金来为你的在线商店获得流量。
当然你需要用你喜欢的分析工具来区分新用户和老用户。
对于新用户来说,他们转变成你顾客的比例有多少?这就是我们衡量所谓顾客获得支出(Customer Acquisition Cost (CAC))的办法。简单来说就是你花了多少钱获得了一位顾客。如果你花了100美元来让5个人在你的网站上买东西,你的顾客获得支出就是40美元。
实际上,并不难理解为什么很多的在线零售商提供20美元的折扣券给第一次来的顾客。这实际上是他们顾客获得成本的一部分;还要加上让用户第一次来到他们的在线商店看看的成本。
除了新客户,下一步是衡量你回头客当中的平均保留率( average retention rate)。你需要知道客户们是不是在重复购买?他们回来的频率,以及他们重复购买时一般的行为是什么样的?
千万不要疏忽后一部分。因为让已经过来的顾客来买东西,总比转化新人要简单的多。
顾客的终身价值
实际上这已经在之前衡量保留率的度量标准当中提到过,毫无疑问这将是所有衡量标准当中最重要的一项,这就是顾客终身价值(Customer Lifetime Value (LTV))。
从核心上来说,电子商务是简单的生意,如果终身价值大于顾客的获取成本,那么你就可以赚钱,如果不是的话,你就不赚钱。很简单。
是的,正如上面的这一句语录所说的,如果你不明白这个公式,你最好就不要做电子商务了。
现在我们怎么横量这一指标?很简单,这是你从客户身上获得的投射净利润。如果你从顾客身上获得的净利润比用户获取的花费要低,你就有麻烦了。
我们在这里来做一些计算。假设一个用户花了500美元购买了4样东西,净利润是100美元。这是500美元的20%,同时也是在这个顾客上所获得的终身价值。如果获取这个用户的花费是40美元,你还可以赚到60美元,你的商业模式就是健康的。
简单的说,根据终身价值所测算的净利润,应该高于获取用户的支出。至少从长远来说必须达到这一点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01