
大数据:仅仅是传统商业智能的花哨标签
根据所有主要分析公司的分析,大数据应该是各大公司议程的首要主题之一。但是,到底什么是大数据?它和传统的数据管理和商业智能有什么不同之处呢?
“思考这个问题的一种方法是考虑汽车行业”,甲骨文公司数据库服务器技术高级总裁Andy Mendelsohn建议到。他指出:“100年前,Henry Ford 发明了T型车。现在,Ford仍然在制造汽车,这些车拥有更好的引擎、全面的传感器和计算机系统。但是在今天结束时,它们的本质仍然是汽车,尽管在过去的100年里,汽车已经改变了很多。人们应当以同样的方式看待大数据。”
“今天,我们拥有基于商业智能的信息系统,人们称它们为数据超市和数据仓库,它们正在从我们的事务处理系统(比如E-Business Suite和其他应用程序提供商)中加载所有的事务信息。而这些有关事务数据的信息是具有真正的价值,它们是公司皇冠上的宝石,它们也不会消失。”
但是,Mendohlson认为,人们现在想利用大数据做的事情只是捕捉各种新型的信息,用以增强和丰富他们目前正在使用的事务信息。“例如,如果你是一个零售商,你可能想到Facebook上,从愿意和你做朋友的客户的Facebook页面中提取信息。其中的大部分的信息都是毫无价值的,是这样吗?所有的婴儿和家庭图片以及类似的东西对你来说都是无用的,你不想把它们保存在你的关系数据库中。但事实上,那些刚刚有了婴儿的人正是零售商所感兴趣的,对不对?零售商可以使用这些信息向上销售婴儿奶瓶、婴儿玩具等一切和婴儿有关的东西。”
因此,对于大数据最重要的是要理解:大数据中存在很多这样的数据,它们中的大部分都是毫无价商业值的,但是同样存在一些宝石,一些有价值的信息,就像上面提到的客户刚刚生了一个孩子的信息一样。你希望得到那些有用的信息,把它们集成到现有的数据仓库的事务数据中并且使用它们做出更好的决策,使公司赚更多的钱。
实践中的大数据
理论上就是这样。然而这在实践中会和客户产生共鸣吗?Mendelsohn列举了三个客户良好的进行实践的例子,他表示这些例子表明确实如此,即客户产生了共鸣。
第一个客户是一家保险公司。“保险是一个我们都很了解的行业。我们都有汽车保险”,他表示:“这种特殊的客户已经有了一个Exadata数据仓库,他们已经捕获了所有与他们顾客相关的事务保险信息:顾客的意外,顾客的政策信息等等。”
他们希望做的是用新的类型的数据增强Exadata,这些新类型的数据可以从汽车获得。现在的汽车上面都装有传感器,可以捕捉你的每一个动作,这种信息被称作汽车远程信息处理数据。他们希望做的是使用该信息实际学习顾客的实际驾驶行为并利用这些数据更好的理解顾客的保险率应该是多少,顾客有什么驾驶习惯,甚至可以帮助顾客更好的驾驶汽车。这实际上是一个非常经典的使用案例。因此他们对用BDA、大数据应用扩展他们的Exadata很感兴趣。
下一个客户是一家旅游公司。“该公司运营着帮助客户查找各种各样旅行信息的网站”,Mendelsohn解释道:“当然,今天他们已经捕捉了他们的客户的所有事务信息,客户选择了哪些行程等。”
“他们希望做的是扩充记录了网站上发生了什么事情的信息。他们希望捕获网络日志,得到社会媒体的数据,用来更好的了解客户的取向,了解客户期待着哪些可能正在进行的旅行,并且合并这些信息和现有的以往的客户事务信息,然后使用它们做出更好的优惠政策,实现业务的增长。”
最后一个客户是一家游戏公司。“游戏产业正成为一个巨大的产业”,Mendelsohn表示:“这家公司的业务是出售各种游戏机和网络游戏,而且他们已经有了一个很大的Exadata数据仓库并且已经分析了其中的信息。他们正在寻求使用BDA扩充Exadata数据仓库,他们还希望使用这些数据了解顾客的期望:更好的了解顾客在游戏中的行为。”
“他们希望了解顾客之间的关系。在游戏中真正有趣的事情之一是人们在一块玩游戏。你会想了解人们在其中相互互动的社交网络,因为当网络中的某个人想做某件事情时,别人可能会做同样的事情。这样游戏公司就可以利用这些信息带来更好的关于游戏的向上销售信息。”
所以整体而言,Mendelsohn的结论是,游戏行业存在着很多利害关系。“这是一个真正的发展了的技术”他指出:“客户拥有现有的属于他们自己的大型BI信息系统,数据仓库、数据超市,真正令他们兴奋地是使用这些大数据扩充他们的业务数据,以帮助他们实现业务增长。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29