京公网安备 11010802034615号
经营许可证编号:京B2-20210330
决战大数据:驾驭未来商业的利器
我们正处在历史的转折点上,数据技术在快速变革。大数据成了人们竞相争议的热词,但鲜有人提及这巨大变革中需要具备的能力。无数的企业及个人望“数”兴叹:“大数据与我何干?”未来是大数据的时代,未来的竞争就是数据的竞争。
也许,我们早该忘掉那些华而不实的喧嚣,让大数据真正从“看” 到“用”,真正“活”起来。大数据的力量来自触类旁通的关联,我们以前总是用数据来证明或企图说服工作上的盲点。而如今的数据不再成为一加一的依据,而是具备了预测和开创新机的能力。
用数据找机会
我第一次见证大数据的魅力是在15 年前,只是当时的我并不知道那就是“大数据”。90 年代初,我认识了一些专业以博彩为生的朋友,这些人组成了一个团队,每年通过赛马,就能盈利数亿港元。我非常惊讶,要知道很多人在赌马场上可是血本无归的,而他们却能把这种概率游戏变成稳定的盈利工具。
原来,他们的秘密就是使用了一套“养数据”策略——将每一场赛马比赛的过程都录了下来。当时我觉得这个做法很奇怪:“电视上已经在播放录像了啊,还另外录比赛干什么?”后来我得知,他们居然在每场比赛中都会录取赛马不同角度的录像。通过这些录像,他们分析出骑师、马匹有哪些失误动作,这些动作会带来怎样的后果,然后再把这些数据“清洗”出一个更准确的数据(Smart Data)。
赛马过程中有许多意外,他们利用数据来还原——如果在没有意外发生的情况下,马匹在不同场地与不同骑师配合中的应有速度。就这样,他们可以更准确地判断出每匹马的实力和获胜的机会;就这样,通过默默无闻的数据收集,入账数亿元。令我最为震惊的是,他们竟然不看表面数据,而是从无限数据的机会中寻找核心数据。
这正体现了大数据最大的不同。以前,我们都是有问题找数据,而大数据时代则不同,其最核心的特质是“用数据找机会”。 我们做大数据,必须要有一个预判,就是哪些数据是你必须要提炼出来解决盲点的。赛马的结果其实充满了“意外”,新的数据角度帮助我们一窥真实的结果,这就是“用数据来还原真实”。
只有实效的数据才是正道
现在,大数据的概念正处于纷杂的时代,媒体上充斥了各种关于大数据的报道,但其中不乏牵强附会、滥竽充数的言论,某些媒体甚至把简单的统计也冠上了“大数据”的头衔。作为一个跟数据打了十几年交道的人,我深深地知道从“看”到“用”,再从“用”到“养”的运营数据,本身就是一个复杂的过程,而也许目前我们最应该做的,就是暂且忘记大数据的概念。
行胜于言,只有实效的数据才是正道。我希望从一个实用的角度来拨开大数据的“迷雾”,告诉每个人大数据的具体运作应该是什么样的;而且数据量绝对不是一个最重要的问题,我们要的不是数据的量,而是有“质”的量,这正是我写作本书的重要目的。
数据,决胜未来的商业利器
在这个风云变幻的数据时代,只有让数据成为商业的利器才能决胜千里。
首先,我们需要拥有一套具有商业敏感的数据决策框架,可以使企业“看”得更准,并能够对近期做了什么是对的、什么是错的进行判断。这样一来,快速的数据反馈可以让每个决策的误差得到适时修正。
其次,让数据真正从“看”到“用”,让用数据成为构建企业生产力的重要部分。
再次,让Data Technology(DT 战略)深入到企业的每个角落,使数据从生产、收集、使用、分享、反馈变得简单易用。
最后,让DT 战略落地还要特别注意数据的稳定、准确、时效和有效实施。
在阿里巴巴,我学习到一个很重要的经验——人和事是分不开的。企业要想成为一家数据化的公司,文化的培养必不可少。“混、通、晒”及“存、管、用” 两套内功是让企业的血液(数据)流动起来的关键。数据流动得宜,则神清气爽;相反,数据如果出现停滞或质量问题,企业则性命不保。
锻造数据力和思考力的合力
大数据时代的到来,让我们几千年来第一次碰上了数据化带来的机遇和滚滚红利,也让每个人的思维方式出现了重大改变。很多时候,我们欠缺的不是解决问题的方式,而是定位问题的能力;有没有数据可以改善我们的盲点;我们该如何学会用“假定数据是可获取的”来重新思考周围的一切。
当这种数据化思考成为你的“直觉”时,就能够把数据的力量和思考的力量融合在一起,从而产生出新的无与伦比的合力。到那时你会发现,周围的一切都将因此而焕发出新的生机。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23