
大数据催生新一代联络中心
作为一个消费者,当你打电话去企业的客户服务电话,或者用电子邮件、网络聊天跟企业联系,你一定希望他们可以问一答十,轻而易举地解决你所面临的问题。然而,你是不是越来越容易失望?这种时候,请先不要抱怨企业客服人员无能,因为你自己不知不觉已经跨入新一代消费者的行列,你获取产品知识和经验的渠道无形中早已今非昔比。客服人员如果觉得无辜、冤枉,其实是企业应该升级他们的客户联络中心了!
联络中心必须适应大数据
以往,与企业相比,消费者所掌握的商品信息是比较少的。现在可不同了,智能手机随时可以为消费者提供丰富的信息,从产品知识到其他消费者的经验一应俱全。消费者在打电话给企业的客户联络中心时,他可能早已搜集好了完整的产品资料,让企业客户联络中的座席人员原本所拥有的信息优势几乎不存在了。所以,企业必须意识到,当消费者找上自己的联络中心的时候,他所具备的知识,特别是他所掌握的其他消费者的评价和体验知识,很可能已经远远超过自己的客服人员。
面对大数据环境,联络中心座席人员究竟需要多少数据才能给客户提供足够好的体验?其实,这个问题的答案本身就是个问题。例如,先进的联络中心可以对座席人员与客户的互动进行全程录音,可是究竟哪些录音数据应该被关注呢?在大数据环境中,能够提取出有价值的、关键性的那部分数据,这是新一代联络中心必然面临的一大挑战。
例如,微博是典型的海量数据。如果企业的微博监控系统发现,某个客户在他的微博中提到自己最近买了一样东西,同时也发现这个客户有个朋友的生日临近了,就可以提醒他顺便给朋友买个生日礼物,同时送上一些推荐礼物和优惠券的超链接。能够适应大数据环境的联络中心平台就会具备类似的功能。
掘金大数据,提升客户体验
实际上,新一代联络中心已经在回应大数据需求。相应的技术和支持能力已经越来越成熟。这是因为,各方面的需求压力早就接踵而来。企业管理人士要求以更低的投资获得更高的回报。客户要求企业提供更好的互动体验。座席人员也要求提供更灵活的排版选择。
所有这些要求都是合理的,但也带来了新挑战。其中许多新挑战都能随着大数据概念和技术的引入而迎刃而解。只要能够在适当的时间获得适当的数据,就可以支持座席人员和企业高层做出质量更高的决策,特别是对于交叉销售、催收催缴这里业务更是如此。把人员、软件应用和业务流程统合起来考虑,企业就可以在降低人力成本、提高服务水平和客户忠诚度等方面取得显著的效益。
例如,联络中心产生的数据可以用来对座席人员进行培训,评估他们的绩效,并且以更快的速度提供更丰富的信息给座席人员。
但是,更重要的是,在大数据环境中,企业可以把联络中心与其他业务应用系统更紧密的整合起来,更好地服务于战略目标。
互动管理和劳动力优化将是两大主题
为了适应新的需求,在全球联络中心积累了30多年历史的老牌提供商Aspect最近也做出了重大调整,把所有的产品规划为两大门类:互动管理(Interaction Management)和劳动力优化(Workforce Optimization)。
Aspect已经是劳动力优化市场的主导者,但还是会采取更大的行动来积极进取。目前,Aspect大部分业务收入来自互动管理,但在未来劳动力优化将会占有越来越大的比例。事实上, Aspect最近还专门成立了一个部门致力于面向Microsoft Lync平台的劳动力优化产品。
Aspect刚刚推出的劳动力管理软件Workforce Management 7跟云计算的关系极为紧密。虚拟联络中心是当今云计算最为成熟的应用之一,而劳动力管理作为联络中心的重要组成部分,能够支持虚拟联络中心是对云计算整体方案的重大提升。
Aspect® Unified IP® 7.1 (Tiger Shark)以及Workforce Management这些产品的应用实践证明,从系统的开销来看可以节省50%的维护成本和将近80%的软硬件投资,从而可以显著提高工作效率、降低成本。
目前,Aspect在全球有超过7000家企业客户,在过去的10个季度了增加了250个客户。特别是在金融服务、医疗健康、保险和电信等行业,Aspect积累了丰富的经验。从商业模式上看,客户可以直接购买软件许可,也可以选择订阅式购买(based on subscription)或者混合模式。无论如何,Aspect在行业市场都以独特优势的产品、丰富的服务经验都让新客户对他们充满信心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16