
大数据时代需注重数据管控
新世纪以来,信息和数据呈爆炸性增长态势,世界进入大数据时代。按信息单位计算,现在全世界每天发送的数据量达40亿个或更多,我们的数字世界已拥有超过1.8万亿吉比特的数据,并且仍将以每年40%以上的速度增长。大数据正在通过各种方式对人类经济社会发展的各个领域产生重要影响。
随着数据量的高速增长,数据的内在价值日益受到关注。数据量激增已经给各行各业带来深刻影响,以数据为研究基础的社会科学也不例外。目前,虽然文献的知识本质并没有随时代的变化而变化,但其符号、载体和记录复制方式正在发生翻天覆地变化;电子形式或网络空间中的文献正在向综合化方向发展,数字化、多媒体、可视化等正在成为文献记录、保存和传播的发展方向。面对这种形势,社会科学的研究方法、研究内容和学科疆界也在发生变化。在这一进程中, 我们面临的一个突出问题就是数据和信息的质量及其管理。虽然大数据无处不在,但社会科学研究者能够利用的毕竟只是其中极小一部分。一方面是数据和信息资源的数量无限增长,另一方面是人类对这些海量数据和信息资源的认知与利用能力还远远跟不上;一方面是有用资源具有明显稀缺性,另一方面又存在大量低质量的冗余信息。在海量数据和信息面前,如果没有数据管控,没有数据和知识挖掘、发现、组织、导航、表达的科学化管理过程,科研人员就有可能迷失在数据和信息的汪洋大海中。
当前,数据管控已成为学术研究尤其是社会科学研究中一个极为重要的问题。只有通过数据管控,加强对数据特别是分布式数据的观察和管理,充分利用网格计算等信息技术来搜集、加工、整合、共享及传播相关数据,才能达到数据和知识利用的精准化、科学化和最大化。比如,知识发现软件工具可以帮助社会科学研究者从结构化数据或非结构化的复杂数据中提取有用和便于理解的知识。文献信息服务的实践表明,包括图书馆在内的文献信息服务机构,由于掌握着大量科研数据,正是对科研数据实施动态管控的最佳信息组织。通过数据管控,可以为科研人员提供超越时空的图书馆泛化服务,即移动性的数据、信息和知识获取场所,零时差的获取时间,多样化的获取工具。
在大数据时代,鉴于离散型的文献和文献检索方法已无法满足社会科学研究者对专题性、指向性强的学术文献的需求,文献信息服务机构应推进集成式检索,优化数据挖掘技术、知识发现技术,提供定制化、个性化、知识化服务。尤其是建立面向科技创新基地、科研院所、课题组乃至个人的学科化服务机制,进一步拓宽文献信息服务范围,提升服务层次,加快学术交流和信息、知识的传播速度,提高文献信息资源的利用率和共享率,使文献信息服务机构的服务更直接、更有针对性,更好地服务于创新研究。
目前,我们对大数据的探索只是刚刚开始,科学认识和把握大数据与经济社会发展的内在关系、与信息和知识管理的内在关系,可能是包括文献信息工作者在内的整个学术界在今后相当长一段时间的重要课题。因此,文献信息工作者不能停留在低层次、低水平重复的传统内容生产模式上,而应适应大数据时代的新形势,推进知识生产过程的有序化、结构化。
人类正处在一个强调知识和信息的时代。培根曾提出“知识就是力量”,后来学术界又提出“信息就是力量”。现在,又有学者提出“共享知识就是力量”,强调把信息管理、信息共享提升到知识管理和知识共享的阶段。利用互联网来构建知识社会,在网络环境下实现知识交流与共享,这体现了时代的进步,有着丰富的时代内涵。在大数据时代,我们应做好数据管控,把“共享知识就是力量”的理念贯彻到知识服务实践中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10