京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与互联网平台将推动工业智能化
如果工业互联网能够像当今的消费互联网那样得到充分应用,从现在到2030年,工业互联网将可能为中国经济带来累计3万亿美元的GDP增量。
谈及工业互联网,必然与物联网有着密切或是混淆的印象关联,当物联网以M2M的概念突袭世界时,Machine-to-Machine的技术以物联网和卫星遥感定位技术,充分达到了远程实时监控的工业目标,那么在工业互联网时代,同样可能是M2M的简称,但是,M可能悄然发生着一些改变,M可能是Message,有可能是management,当然,其中必然包括了match和monitor的概念。
IT技术与商业的对接演化成了新的商业模式——电子商务,除去前期野蛮生长之后的稳定而高速的增长,电子商务平台以及衍伸的O2O模式的融合,成为了一种让互联网技术商业价值变现的范式,同时这种范式给予了创新性技术与工、商以及农业融合可能性全新的遐想。相比较电子商务而言,当前制造业的产品和服务在数字化、智能化和互联化上远跟不上信息技术发展。制造业应加快与互联网技术的融合,“互联网技术+平台型企业”将成为未来制造业企业发展的趋势,这种看似跨界的嫁接在大数据的爆发点,或许产生全新的化学反应。
基于大数据,超越大数据
世界上的任何事物,都有可能产生数据,并产生数据的流动性,这是一种最为理想的状态,而如何采集,存储并利用数据来产生价值,才是具有革新性的一步。大数据利用云计算以及物联网进行数据的抓取、存储、分配和分析,以及进行海量数据的分析,然而,大数据的内涵并不仅仅在数字和见解,数据本质上的价值在于数据的应用,也就是说,以连接的方式,将大数据赋予大数据智能,不仅仅是一种数字的分析和见解,而是一种对于工业的状态管理、监控以及自适应和智能调整,让数据智能的知道以何种方式前往何地去完成何事。
不可否认的是,大数据是工业互联网的命脉,但是,工业互联网同样意味着创新形式和软件的应用和开发,基于物联的基础之上,抓取和一句逻辑厘清数据,然后经软件连接互联网,从此产生数据,但是更重要的是,将机器成为可以被管理和被自适应调整的智能网络,对工业的问题进行逻辑预测和调整,进行最优化的工业控制和管理,对有限资源进行最大限度的使用,从而降低工业和资源的配置成本,在大数据的基础上,以工业的互联管理和智能达到超越大数据的应用性。
应用,让工业互联网价值变现
自谷歌接连发布谷歌眼镜和谷歌会说话的鞋子之后,穿戴设备成为热门话题,将数据采集移植到任意设备采集信息,然后联通移动互联网络进行整理和运算,为个人提供最大程度的信息判断和预读,这是典型的人机之间的数据对话,以及大数据采集对用户便利性的案例。
当然,在大数据时代,首先解决数据采集以及传感的问题之后,那么工业互联网便迎来了价值变革的集中爆发,无论是在远程医疗,通过远程采集端对基础数据的采集,上传至互联网,进行远程的医疗咨询,通过大数据+互联网平台的方式,解决医疗资源的分配问题,还是通过个人可穿戴设备,进行实时的个人健康状态监控和管理,都是工业互联网的应用案例。
不仅仅除了远程的医疗和智能农业,还包括远程教育体系同样也可以用工业互联网进行实现,通过远程数据采集端或是数据录入界面,采集不同地区不同个人之见的教育水准测试,反馈至互联网云端,进行分析运算,实现同等优势教育资源和教育内容的再分配,达到真正意义上的无距离“因材施教”,这也是工业互联网的应用之处。
当然,工业互联网并非仅限于传统的工业,工业互联网应该是一种模式,而这种模式将会打来优势资源的整合和再分配,缩短空间距离和时间以及人力等带来的成本障碍,同时达到在最大数据化效能的应用和整合,而这种整合,在数据端采集和互联网运算能力的不断提升,不断对传统的社会模式进行渗透,将产业变得更加有效,实现计算机技术的产业价值变现。
从大数据到3D打印,信息技术的不断更新带来的是更多的变革,而在创新技术不断变现和工业不断智能化的时候,也正处于工业互联网爆发的前夜,大数据+互联网平台的模式,期待在爆发中将社会的未来变现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16