京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运营商BI系统走向精细化
近年来,运营商在BI领域的进展有目共睹,一些电信运营商开始在用户的账单上精准营销,通过整合客户数据,利用数据挖掘技术,在每月消费账单中内置营销服务,从而开辟了全新的营销渠道。那么,对于BI未来规划和近期目标,企业专家又有哪些见解?
对话嘉宾:
亚信联创市场咨询部解决方案咨询部经理 彭怀湘
亚信联创业务运营咨询部经理 冀振明
爱立信中国及东北亚区运营与业务支撑系统总监 林 鹏
驱动BI价值走上台前
记者:在采访中,有运营商人士对于BI理解并不深刻,认为其建设投入与实际带来的经济效益不成正比,您如何看待这一问题?
彭怀湘:我认为这是一个误区,错误地将BI系统归为了生产系统,就如同运营商后台系统的计费系统、BSS系统一样。对于BI的实际价值,举一个例子说明,比如我们要开一家杂货店需要选择地段,我们去考察分析决定开在某街道,开张后果然生意很好。我们看到是这家店的盈利能力,而不是当初那个点子。BI则像那个点子,无法直接评估其经济效益。
BI作为分析决策支撑系统,它对于运营商的作用虽然不如其他生产系统那样直接,但却也是在潜移默化地影响着整个后台的系统决策和运作,同时让生产流程系统更加智能化。
林鹏:目前的系统宏观分析有余,微观分析不足;事后分析有余,事先预测不足;静态分析有余,动态挖掘不足;战略分析有余,战术支撑不足;客户服务团队不能得到信息化端到端的有效支撑。
这种情况直接产生了两个后果:企业高层的决策产出多少效益,有多少直接来源于BI系统难以度量。这使得系统成为企业高层经营分析的工具,对基层营销实践指导不足。
举个例子来说,某运营商A因为新型的智能手机广受大量高端用户的青睐,因此A运营商针对B运营商的高价值客户进行了不同策略的吸引,但似乎在B运营商的BI系统并没有事先预测到VIP客户潜在的流失,甚至在事中事后也没有任何客户挽留行动。[page] 以客户接触点为基准
记者:运营商希望通过BI系统不断实现深度营销,但这是一个贯穿多系统的复杂项目,您认为现阶段亟需解决哪些问题?
冀振明:BI系统的深度营销离不开包括电子渠道系统、CRM系统的支撑,我也认为,最关键的是,真正实现以客户接触点为基点,全面打通业务系统流程。毕竟处在客户的角度,他们并不关心运营商的后台究竟有多少系统在运转,只希望能够解决切身问题。
因此,我们需要以每一个客户接触点为基准,通过BI算出客户消费模型,与CRM产品库的产品做匹配,与电子商务网站信息联动,统一底层数据接口,实现整个业务流程的精细化运营。
更值得注意的是,由于运营商部门设置庞大且复杂,这也使得市场营销活动成为一个多部门跨域合作的项目,因此如何缩短市场营销部门和技术支撑部门的响应时间,强化前后台之间的沟通交流,也将成为BI能否真正体现价值的关键所在。
各级BI系统区别定位
记者:据了解,一些省级运营商的BI系统仅限于本地网存在,请问这与运营商集团层面的BI统一规划是否存在冲突,集团和省公司的BI系统在功能上是如何区分的?
彭怀湘:不会造成影响,因为集团层面和省公司的BI系统在业务范畴、关注层面都用明显的定位差别,两套系统间应该是互补关系。
集团层面BI系统主要负责管理和监控,各省BI系统主要负责市场和经营,而地市公司则借用省公司的数据仓库,远程访问省公司的BI系统,实现市场经营分析活动;同时省公司也将自身BI系统数据定期上传集团公司,以便集团对各省业务数据进行指标考核。
林鹏:全国集中的BI系统着眼的是面向全国的大事。而各地的BI系统,着眼研究各地的特殊问题。我们不能指望用一个数据挖掘的建模就能满足全国各地的要求。各地的情况千差万别,应分享经验、分别建模、独立分析。
重视数据整合和质量提升
记者:BI系统在运营商方面已经建立了完备的演进脉络,请问现阶段运营商的投入和建设重点在哪里,将着重解决实际应用中的哪些难点问题?
冀振明:BI系统建设是一个不断完善的过程,运营商会针对BI系统的不同阶段制定不同的业务目标,以中国移动为例,在2011年,其经分系统将着重精细化迈进,细分客户群,深度运营渠道。
由于运营商每天都在生成数以百万计的数据信息,后台系统又由于种种历史原因导致整体架构并不统一,存在严重的数据割裂现象,这些无疑将加剧运营商BI系统建设难度。作为BI系统的基础,解决数据一致性问题也将成为运营商一项长期工作。厂商一方面要重点关注在如何实现数据整合和质量提升等方面;另一方面,灵活构建切实满足业务人员营销与服务的BI应用。
林鹏:构建系统体系首先要着眼于数据的系统性和全面性,以支撑相应的经营决策。省公司和地市公司的重点会有所不同,地市公司可以在省公司的数据支持下,建立专业系统,对数据进行主题化、深入的分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15