京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何看待大数据“杀熟”与“歧视”
大数据“杀熟”成为关注的焦点,媒体对2008名受访者调研发现,51.3%的受访者遇到过互联网企业利用大数据“杀熟”的情况。
所谓大数据“杀熟”,指的是订房、打车等互联网平台利用收集的用户数据信息,对个别用户进行歧视性提价从中获利。
当我们个人遇到这样的情况时往往心情上是很难接受的。
过去,我们可能遇到,在酒店入住同样的房间,价格差别50%以上,此时尚可自我辩解说订房渠道不同。
现在,我们只是换自己不同的账号登录这些软件,价格就会出现一定的差别。对比之下,我们难免觉得受到歧视、感到愤怒:我们的数据竟然被用来歧视我们?
这是一个复杂的问题,值得尝试着一层一层地剥开进行拆解。
首先,差别定价无处不在。在线下商品零售领域,从没有明确的价格标牌,到有明确的价格标签,这是一种市场效率的进步。在熟人构成的小集市中,虽然没有明确价格标签,但社会规范让摊主会维持不变的价格。当交易扩展到陌生人时,明码标价可以提升交易效率。
但我们不能简单粗暴地说,明确的、不变的价格就是公平的、合理的。
在航空、酒店等领域,虽然机票与房间均有明确的定价,但所谓的“收益管理”是常见的安排,也就是对不同类型的顾客差别定价使得自身收益最大化。这种做法在经济上是合理的,是因为未被使用的座位与房间就是浪费,因而这些公司需要调整价格以平衡供给与需求。
在这些领域,根据情况进行价格调整是被接受的。我们作为个人消费者,偶尔在酒店入住时获得更好的房间,也觉得受到优待。
在有了打车软件之后,优步(UBER)曾备受争议的一点就是,它采用一种相对单一的逻辑来调整价格,当一个地区的供给不足时,它会大幅度调整价格。平常这种价格调整逻辑尚能被接受,但在伦敦发生恐怖袭击后它价格大幅暴涨,引发道德争议,被批评“猪狗不如”,事后它才在其调价算法逻辑中考虑到此类因素。
但这种以收益管理为名的差别定价又有一个明确的边界的。这个隐含但被普遍接受的边界是,商家不能针对某个具体的个人歧视性提价。
形象地说,一个不受欢迎的客人达到餐厅门口时,老板可以直接或委婉地拒绝他进入,但不可说,对你这个人我们的价格提升一倍。但反过来是可行的,好客的老板可以给客人打折,又或者在欧美餐厅,顾客如果觉得服务好可以给服务员大笔的小费。
当这种差别定价转移到互联网上之后,事情就变得复杂起来,简单地说就是,互联网公司有了个性化对待每个人的能力。
“个性化”是互联网的最大承诺之一,比如在资讯上我们经历了从千人一面的门户网站到每个人看到的都不一样的社交网站信息流和资讯APP的信息流,我曾类比说,这就相当于从看电影屏幕到每个人走在街上用自己眼睛看到独特的画面。
在互联网广告等领域,平台根据搜集的数据给你展示对应的营销信息也很常见。
也就是说,互联网公司在产品设计理念和能力上一直可以做到个性化,且产品趋势是越来越个性化。
从流量等各种资源的利用效率角度来说,个性化也是从“大水漫灌”到“精准滴灌”。
同时,个性化也是我们这些互联网用户想要的,我们想看到与自己相关的信息,而不想被不相干的信息干扰。
如果把这种个性化思路推广到付费购买商品服务的领域,我们作为消费者也往往愿意为个性化付出更多的费用。
然而,如果互联网平台这种“个性化”能力被用于差别定价(特别是歧视定价也就是对个别人提高价格),就必然带来巨大的争议。
麻烦的是,互联网公司的这种差别定价的能力正变得越来越强。
以实物电商和服务交易对比为例,实物电商平台和平台上的卖家有差别定价的能力,但很难这么做:一方面平台有充分的动力抑制卖家的差别定价,从而维持平台的良好消费生态,另一方面,商品价格的差异很容易被发现和判断,商家“作恶”成本相对较高。
但是,互联网上的服务交易平台如果想“作恶”就会隐蔽很多、成本也低很多,且几乎毫无约束。以打车为例,每一次打车都是独特的,消费者无法判断是否被歧视定价。
让事情更糟的是,在这种场景中,可能作恶的是平台。如果它心怀恶意,它可以盘剥消费者和服务提供者司机两方,而让自身获得收益。
此时,纯从市场角度来讲,对平台的唯一约束就是一个长期约束,它如果作恶被发现,可能损失非常巨大——小则声誉受到影响,大则平台的交易生态崩塌。
之前在研究互联网平台时,我们提出平台的十大启示其中一条是,”互联网基础性平台具有很强的社会性与公共性。基础性平台往往承担多重角色,平台越大,对平台的中立性、公平性、道德性要求越高。“但这仅是一个理想的愿望。
就以上我们讨论的场景看,如何形成一个平衡的、有制约、多方受益的生态,路还很远。大数据”杀熟“把歧视性提价展示在所有人面前,告诉我们这是一个有待解决的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16