京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何看待大数据“杀熟”与“歧视”
大数据“杀熟”成为关注的焦点,媒体对2008名受访者调研发现,51.3%的受访者遇到过互联网企业利用大数据“杀熟”的情况。
所谓大数据“杀熟”,指的是订房、打车等互联网平台利用收集的用户数据信息,对个别用户进行歧视性提价从中获利。
当我们个人遇到这样的情况时往往心情上是很难接受的。
过去,我们可能遇到,在酒店入住同样的房间,价格差别50%以上,此时尚可自我辩解说订房渠道不同。
现在,我们只是换自己不同的账号登录这些软件,价格就会出现一定的差别。对比之下,我们难免觉得受到歧视、感到愤怒:我们的数据竟然被用来歧视我们?
这是一个复杂的问题,值得尝试着一层一层地剥开进行拆解。
首先,差别定价无处不在。在线下商品零售领域,从没有明确的价格标牌,到有明确的价格标签,这是一种市场效率的进步。在熟人构成的小集市中,虽然没有明确价格标签,但社会规范让摊主会维持不变的价格。当交易扩展到陌生人时,明码标价可以提升交易效率。
但我们不能简单粗暴地说,明确的、不变的价格就是公平的、合理的。
在航空、酒店等领域,虽然机票与房间均有明确的定价,但所谓的“收益管理”是常见的安排,也就是对不同类型的顾客差别定价使得自身收益最大化。这种做法在经济上是合理的,是因为未被使用的座位与房间就是浪费,因而这些公司需要调整价格以平衡供给与需求。
在这些领域,根据情况进行价格调整是被接受的。我们作为个人消费者,偶尔在酒店入住时获得更好的房间,也觉得受到优待。
在有了打车软件之后,优步(UBER)曾备受争议的一点就是,它采用一种相对单一的逻辑来调整价格,当一个地区的供给不足时,它会大幅度调整价格。平常这种价格调整逻辑尚能被接受,但在伦敦发生恐怖袭击后它价格大幅暴涨,引发道德争议,被批评“猪狗不如”,事后它才在其调价算法逻辑中考虑到此类因素。
但这种以收益管理为名的差别定价又有一个明确的边界的。这个隐含但被普遍接受的边界是,商家不能针对某个具体的个人歧视性提价。
形象地说,一个不受欢迎的客人达到餐厅门口时,老板可以直接或委婉地拒绝他进入,但不可说,对你这个人我们的价格提升一倍。但反过来是可行的,好客的老板可以给客人打折,又或者在欧美餐厅,顾客如果觉得服务好可以给服务员大笔的小费。
当这种差别定价转移到互联网上之后,事情就变得复杂起来,简单地说就是,互联网公司有了个性化对待每个人的能力。
“个性化”是互联网的最大承诺之一,比如在资讯上我们经历了从千人一面的门户网站到每个人看到的都不一样的社交网站信息流和资讯APP的信息流,我曾类比说,这就相当于从看电影屏幕到每个人走在街上用自己眼睛看到独特的画面。
在互联网广告等领域,平台根据搜集的数据给你展示对应的营销信息也很常见。
也就是说,互联网公司在产品设计理念和能力上一直可以做到个性化,且产品趋势是越来越个性化。
从流量等各种资源的利用效率角度来说,个性化也是从“大水漫灌”到“精准滴灌”。
同时,个性化也是我们这些互联网用户想要的,我们想看到与自己相关的信息,而不想被不相干的信息干扰。
如果把这种个性化思路推广到付费购买商品服务的领域,我们作为消费者也往往愿意为个性化付出更多的费用。
然而,如果互联网平台这种“个性化”能力被用于差别定价(特别是歧视定价也就是对个别人提高价格),就必然带来巨大的争议。
麻烦的是,互联网公司的这种差别定价的能力正变得越来越强。
以实物电商和服务交易对比为例,实物电商平台和平台上的卖家有差别定价的能力,但很难这么做:一方面平台有充分的动力抑制卖家的差别定价,从而维持平台的良好消费生态,另一方面,商品价格的差异很容易被发现和判断,商家“作恶”成本相对较高。
但是,互联网上的服务交易平台如果想“作恶”就会隐蔽很多、成本也低很多,且几乎毫无约束。以打车为例,每一次打车都是独特的,消费者无法判断是否被歧视定价。
让事情更糟的是,在这种场景中,可能作恶的是平台。如果它心怀恶意,它可以盘剥消费者和服务提供者司机两方,而让自身获得收益。
此时,纯从市场角度来讲,对平台的唯一约束就是一个长期约束,它如果作恶被发现,可能损失非常巨大——小则声誉受到影响,大则平台的交易生态崩塌。
之前在研究互联网平台时,我们提出平台的十大启示其中一条是,”互联网基础性平台具有很强的社会性与公共性。基础性平台往往承担多重角色,平台越大,对平台的中立性、公平性、道德性要求越高。“但这仅是一个理想的愿望。
就以上我们讨论的场景看,如何形成一个平衡的、有制约、多方受益的生态,路还很远。大数据”杀熟“把歧视性提价展示在所有人面前,告诉我们这是一个有待解决的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27