
计算广告:大数据变现的成功实践
近两年,大数据技术在越来越多的行业发挥了作用,计算广告是其中最成熟、市场规模最大的行业之一。将用户行为数据转化为可衡量的商业价值,在线广告创造了互联网行业大部分的营收。如何利用手中的大数据获取更大的利益也广告主和广告商所共同关心的问题。
9月19日,“计算力量改变世界”沙龙在北京科技寺举行。资深广告技术专家刘鹏、汽车之家广告算法经理王超、广告家Pro.cn产品经理李雪莱对这一问题进行了解答,就广告行业发展、广告技术和场景化营销进行了分享,并与数十位广告从业者就程序化购买的挑战和机遇进行了探讨。
网络广告高速发展 程序化购买潜力巨大
互联网广告兼具品牌和效果量方面的功能,更是具备传统广告所缺乏的大量投送和效果优化能力。最近几年的数据显示,网络广告的市场规模正在以惊人的速度发展。
2007年-2013年中美网络/电视广告市场规模折线图 (单位:亿美元)
数据来源:《计算广告》刘鹏 王超著
随着需求优化效果效果的进一步加强,普通的竞价广告模式已经不了市场需求的发展,以实时竞价为核心的程序化交易广告应运而生。资深广告技术专家刘鹏在“计算力量改变世界”沙龙上表示,面对千万网民反馈形成的快速变化的数据空间,程序化购买应用了大量信息检索、机器学习等计算分析技术,通过这些计算分析技术组成的计算平台,能实现实时判断消费者当下场景的潜在需求,然后推送基于该需要的广告内容。
基于大数据技术的程序化购买,做到深入挖掘用户需求和痛点,不仅实现千人千面的广告投放,更促使消费者主动选择广告主的解决方案。而这也吸引越来越多的媒体、网络入口也开始不断的将资源与程序化购买平台进行深度结合,以实现效率和效益的最大化。据艾瑞咨询发布的《中国程序化购买行业报告》显示,2015年中国的程序化购买市场规模有望达到100亿元。而从零起步到达到这一规模,仅仅使用了3年的时间。
刘鹏认为,计算分析技术已经开始改变甚至颠覆传统的广告营销方式,但是当前依然只是程序化购买的初期,各种计算技术、分析,还存在着巨大的提升价值,这让程序化购买在未来具有不可估量价值的同时,也对提供程序化购买服务的企业带来了不小的技术实力挑战。
DSP的未来在场景化营销 数据和技术是重要驱动
通过实时竞价的方式,按照定制化的人群标签购买广告,这样的产品即为需求方平台(Demand Slide Platform,DSP)。刘鹏认为目前各家DSP的差异并不明显,未来越深耕的平台机会越大。
对此,广告家Pro.cn产品经理李雪莱很是认同,他说,庞大而实时的大数据信息,结合先进科学的计算分析技术是决定程序化购买能否不断创造价值的关键。
李雪莱进一步表示,拥有数十万WAP、网吧、网站、App、软件以及机场、校园、咖啡厅、酒吧、酒店、餐饮等场景网络的广告家Pro.cn,独有场景媒体和场景化数据,通过不断完善机器学习、多维度信息检索等计算分析技术,能够良好分析出目标用户营销价值,再根据人群、场景、时间段进行多维度匹配,由此为广大企业和品牌广告主提供快速、高效的场景营销,实现将广告与目标受众精确匹配。
据了解,广告家Pron.cn通过AdPro场景营销自助平台(DSP)、DataPro场景数据服务平台(DMP)的完整场景营销服务生态,目前可触达独立用户高达1.5亿,日流量PV更是超过5.5亿。而广告家Pro.cn最新的DSP 3.0也将于10月推出,新产品特有场景轨迹技术,让广告主可以自由选择覆盖场景范围。
程序化购买有两大最为核心的指标,一是庞大而实时的数据库作为支撑,二是先进科学的计算分析技术。随着市场的趋向成熟,计算技术的竞争比重会越来越大。除了基本的机器学习,包括近来兴起的深度学习,信息检索、博弈论,以及强化学习的等诸多计算技术和理论,都会成为提升程序化购买应用范围和竞争力的组成部分。
届时,程序化购买也将开始新的一轮优胜劣汰,并推动市场整体实现从数据到计算技术竞争,再到数据竞争的螺旋式增长。“广告发展驱动力就是数据利用的广度和深度,当数据利用无法满足广告时,就会推动技术和计算的提升。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15