京公网安备 11010802034615号
经营许可证编号:京B2-20210330
计算广告:大数据变现的成功实践
近两年,大数据技术在越来越多的行业发挥了作用,计算广告是其中最成熟、市场规模最大的行业之一。将用户行为数据转化为可衡量的商业价值,在线广告创造了互联网行业大部分的营收。如何利用手中的大数据获取更大的利益也广告主和广告商所共同关心的问题。
9月19日,“计算力量改变世界”沙龙在北京科技寺举行。资深广告技术专家刘鹏、汽车之家广告算法经理王超、广告家Pro.cn产品经理李雪莱对这一问题进行了解答,就广告行业发展、广告技术和场景化营销进行了分享,并与数十位广告从业者就程序化购买的挑战和机遇进行了探讨。
网络广告高速发展 程序化购买潜力巨大
互联网广告兼具品牌和效果量方面的功能,更是具备传统广告所缺乏的大量投送和效果优化能力。最近几年的数据显示,网络广告的市场规模正在以惊人的速度发展。
2007年-2013年中美网络/电视广告市场规模折线图 (单位:亿美元)
数据来源:《计算广告》刘鹏 王超著
随着需求优化效果效果的进一步加强,普通的竞价广告模式已经不了市场需求的发展,以实时竞价为核心的程序化交易广告应运而生。资深广告技术专家刘鹏在“计算力量改变世界”沙龙上表示,面对千万网民反馈形成的快速变化的数据空间,程序化购买应用了大量信息检索、机器学习等计算分析技术,通过这些计算分析技术组成的计算平台,能实现实时判断消费者当下场景的潜在需求,然后推送基于该需要的广告内容。
基于大数据技术的程序化购买,做到深入挖掘用户需求和痛点,不仅实现千人千面的广告投放,更促使消费者主动选择广告主的解决方案。而这也吸引越来越多的媒体、网络入口也开始不断的将资源与程序化购买平台进行深度结合,以实现效率和效益的最大化。据艾瑞咨询发布的《中国程序化购买行业报告》显示,2015年中国的程序化购买市场规模有望达到100亿元。而从零起步到达到这一规模,仅仅使用了3年的时间。
刘鹏认为,计算分析技术已经开始改变甚至颠覆传统的广告营销方式,但是当前依然只是程序化购买的初期,各种计算技术、分析,还存在着巨大的提升价值,这让程序化购买在未来具有不可估量价值的同时,也对提供程序化购买服务的企业带来了不小的技术实力挑战。
DSP的未来在场景化营销 数据和技术是重要驱动
通过实时竞价的方式,按照定制化的人群标签购买广告,这样的产品即为需求方平台(Demand Slide Platform,DSP)。刘鹏认为目前各家DSP的差异并不明显,未来越深耕的平台机会越大。
对此,广告家Pro.cn产品经理李雪莱很是认同,他说,庞大而实时的大数据信息,结合先进科学的计算分析技术是决定程序化购买能否不断创造价值的关键。
李雪莱进一步表示,拥有数十万WAP、网吧、网站、App、软件以及机场、校园、咖啡厅、酒吧、酒店、餐饮等场景网络的广告家Pro.cn,独有场景媒体和场景化数据,通过不断完善机器学习、多维度信息检索等计算分析技术,能够良好分析出目标用户营销价值,再根据人群、场景、时间段进行多维度匹配,由此为广大企业和品牌广告主提供快速、高效的场景营销,实现将广告与目标受众精确匹配。
据了解,广告家Pron.cn通过AdPro场景营销自助平台(DSP)、DataPro场景数据服务平台(DMP)的完整场景营销服务生态,目前可触达独立用户高达1.5亿,日流量PV更是超过5.5亿。而广告家Pro.cn最新的DSP 3.0也将于10月推出,新产品特有场景轨迹技术,让广告主可以自由选择覆盖场景范围。
程序化购买有两大最为核心的指标,一是庞大而实时的数据库作为支撑,二是先进科学的计算分析技术。随着市场的趋向成熟,计算技术的竞争比重会越来越大。除了基本的机器学习,包括近来兴起的深度学习,信息检索、博弈论,以及强化学习的等诸多计算技术和理论,都会成为提升程序化购买应用范围和竞争力的组成部分。
届时,程序化购买也将开始新的一轮优胜劣汰,并推动市场整体实现从数据到计算技术竞争,再到数据竞争的螺旋式增长。“广告发展驱动力就是数据利用的广度和深度,当数据利用无法满足广告时,就会推动技术和计算的提升。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27