
大数据时代下数据中心变革
“用数据爆炸形容今天的IT发展一点也不为过,数据增长永无止境。”世纪互联李志霄博士认为对于企业来说,与用户使用习惯、地理分布、甚至企业需求变动都可以通过在大数据挖掘得到有价值的参考信息。大数据时代将信息价值的概念推到了企业CIO面前。
根据国际数据公司IDC 2011年发布的Digital Universe
Study,全球信息总量每过两年,就会增长一倍。仅在2011年,全球被创建和被复制的数据总量为1.8ZB(1.8万亿GB)。相较2010年同期上涨超过1ZB,到2020年这一数值将增长到35ZB。这就是大数据的创建和产生。
“我们看现在的Facebook,全球用户数量正在逼近10亿,中国的新浪微博注册用户数量也已经破3亿,腾讯的即时通讯工具活跃用户达到7.1亿,仅次于中国和印度的人口数字。仅社交网络这一项所产生的数据就已经非常惊人。”
数据高效处理需求驱使数据中心变革
数据流量每上升一个数量级,要求IT具备相应的高效率处理能力,从而引发IT的革命。从PC机出现、互联网普及到今天的云计算,都是为提升IT效率而出现的技术和解决方案。
IDC预测2020年,全球所有IT部门拥有服务器的总量将会比现在多出十倍(包括虚拟机和物理机),所管理的数据增长50倍,而IT管理人员的总数增长幅度仅仅只会向上浮动1.5倍。大数据高效存储、有效提取的需求正在敦促传统数据中心向满足云计算应用条件的数据中心转型。
“虚拟化技术提升了传统物理机的使用效率,通过云计算形成资源池,数据散列分布于资源池的不同物理机上。大数据挖掘工具在其中起到指针的作用,根据对信息内容的需求指向信息存储的空间,形成数据仓库。这一系列改变的发生都将在云计算数据中心发生。”
绿色节能成为必备条件
“从设备上说,服务器、机房、带宽、电力、制冷等硬件设施相比于传统数据中心并不会发生本质性的变化,但是会以绿色节能为宗旨去发展。数据中心耗电未来会是个很大的议题。”
史丹佛大学土木与环境工程系的教授ohnathanG.Koomey针对数据中心对全球耗电量印象的报告称,全球的数据中心在2010年共消耗1,988亿千瓦时的电力,约是全年总发电量的1.1至1.5%,而这个比例不可小视。电力已经成为数据中心份额最大的支出项,Google、微软等数据中心大户开始尝试将数据中心建设在严寒地带以减少电力消耗。
“IT的价值在于节约数据处理的成本,云计算则帮助企业降低IT成本。”李志霄博士指出云计算数据中心通过大规模数据中心集成的方式,降低数据处理的平均费用。大型云计算数据中心将更多考虑所在的地域环境,充分利用自然条件降低能耗,如当地低温气候,风能、潮汐、太阳能等清洁能源。
数据中心运营服务外包
李志霄博士认为云计算数据中心最本质的改变在于软件和服务。软件包括实现存储、计算能力调用、计费、安全等的虚拟化、分布式等技术,以微软、亚马逊为前例;服务的改变意味着传统物理机房的运维DNA将作为优质服务的前提条件,而非全部内容。运维工程师由维护物理机房转变到软件平台、网络平台的维护,比如Debug。
随着云数据中心规模化发展,运维服务从硬件维护走向软硬兼具,运维服务的难度与规模相应扩大。“运维服务走向专业化、外包化将成为行业趋势,在这一领域机遇与挑战并存。具备运维DNA数据中心企业将有机会成长为专业的云数据中心运维服务提供商。世纪互联作为一家拥有十几年运维DNA的数据中心服务提供商,未来对云的探索值得期待。”
云数据中心需要顶层设计
中国目前拥有58.8万个数据中心,高工产业研究院数据显示2011年新建数量达6800个,其中不包括各地正在规划的云计算数据中心。大数据背景下,如何看待中国云计算数据中心的快速增长,李志霄博士提出了自己的理解。
“由于意识到虚拟化技术,多租户技术的浪潮来临,美国2011年将政府IDC由2000个减到1200个,注意,是减,不是增。但这个前提是云计算应用已经相当普遍。在中国,云数据中心正处于建设期,正是政府参与进行顶层设计,整体规划的最佳时机。”
李志霄博士认为,与电子政务、教育、医疗等相关的公有云大数据将会推进智能城市的发展。公有云落地之时,中国云计算数据中心的变革才会真正到来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15