京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下数据中心变革
“用数据爆炸形容今天的IT发展一点也不为过,数据增长永无止境。”世纪互联李志霄博士认为对于企业来说,与用户使用习惯、地理分布、甚至企业需求变动都可以通过在大数据挖掘得到有价值的参考信息。大数据时代将信息价值的概念推到了企业CIO面前。
根据国际数据公司IDC 2011年发布的Digital Universe
Study,全球信息总量每过两年,就会增长一倍。仅在2011年,全球被创建和被复制的数据总量为1.8ZB(1.8万亿GB)。相较2010年同期上涨超过1ZB,到2020年这一数值将增长到35ZB。这就是大数据的创建和产生。
“我们看现在的Facebook,全球用户数量正在逼近10亿,中国的新浪微博注册用户数量也已经破3亿,腾讯的即时通讯工具活跃用户达到7.1亿,仅次于中国和印度的人口数字。仅社交网络这一项所产生的数据就已经非常惊人。”
数据高效处理需求驱使数据中心变革
数据流量每上升一个数量级,要求IT具备相应的高效率处理能力,从而引发IT的革命。从PC机出现、互联网普及到今天的云计算,都是为提升IT效率而出现的技术和解决方案。
IDC预测2020年,全球所有IT部门拥有服务器的总量将会比现在多出十倍(包括虚拟机和物理机),所管理的数据增长50倍,而IT管理人员的总数增长幅度仅仅只会向上浮动1.5倍。大数据高效存储、有效提取的需求正在敦促传统数据中心向满足云计算应用条件的数据中心转型。
“虚拟化技术提升了传统物理机的使用效率,通过云计算形成资源池,数据散列分布于资源池的不同物理机上。大数据挖掘工具在其中起到指针的作用,根据对信息内容的需求指向信息存储的空间,形成数据仓库。这一系列改变的发生都将在云计算数据中心发生。”
绿色节能成为必备条件
“从设备上说,服务器、机房、带宽、电力、制冷等硬件设施相比于传统数据中心并不会发生本质性的变化,但是会以绿色节能为宗旨去发展。数据中心耗电未来会是个很大的议题。”
史丹佛大学土木与环境工程系的教授ohnathanG.Koomey针对数据中心对全球耗电量印象的报告称,全球的数据中心在2010年共消耗1,988亿千瓦时的电力,约是全年总发电量的1.1至1.5%,而这个比例不可小视。电力已经成为数据中心份额最大的支出项,Google、微软等数据中心大户开始尝试将数据中心建设在严寒地带以减少电力消耗。
“IT的价值在于节约数据处理的成本,云计算则帮助企业降低IT成本。”李志霄博士指出云计算数据中心通过大规模数据中心集成的方式,降低数据处理的平均费用。大型云计算数据中心将更多考虑所在的地域环境,充分利用自然条件降低能耗,如当地低温气候,风能、潮汐、太阳能等清洁能源。
数据中心运营服务外包
李志霄博士认为云计算数据中心最本质的改变在于软件和服务。软件包括实现存储、计算能力调用、计费、安全等的虚拟化、分布式等技术,以微软、亚马逊为前例;服务的改变意味着传统物理机房的运维DNA将作为优质服务的前提条件,而非全部内容。运维工程师由维护物理机房转变到软件平台、网络平台的维护,比如Debug。
随着云数据中心规模化发展,运维服务从硬件维护走向软硬兼具,运维服务的难度与规模相应扩大。“运维服务走向专业化、外包化将成为行业趋势,在这一领域机遇与挑战并存。具备运维DNA数据中心企业将有机会成长为专业的云数据中心运维服务提供商。世纪互联作为一家拥有十几年运维DNA的数据中心服务提供商,未来对云的探索值得期待。”
云数据中心需要顶层设计
中国目前拥有58.8万个数据中心,高工产业研究院数据显示2011年新建数量达6800个,其中不包括各地正在规划的云计算数据中心。大数据背景下,如何看待中国云计算数据中心的快速增长,李志霄博士提出了自己的理解。
“由于意识到虚拟化技术,多租户技术的浪潮来临,美国2011年将政府IDC由2000个减到1200个,注意,是减,不是增。但这个前提是云计算应用已经相当普遍。在中国,云数据中心正处于建设期,正是政府参与进行顶层设计,整体规划的最佳时机。”
李志霄博士认为,与电子政务、教育、医疗等相关的公有云大数据将会推进智能城市的发展。公有云落地之时,中国云计算数据中心的变革才会真正到来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15