
谢文:互联网金融还是大数据金融
近来,颇有几个新名词在市面上流行,诸如“互联网金融”,“信息消费”之类。这些新名词并非产自概念日日翻新的互联网业,却来自传统金融业甚至政界,其气势之大,梦想之美,内涵之广,投入之多,逻辑之混乱,可行性之差,似乎值得一辨。
就概念而言,从众说纷纭中大致可以概括出互联网金融的几层含义:
一是传统金融服务的网络化,例如网络银行,网络券商,网络保险,等等。这些都是古已有之的东西,只不过在中国实现较晚,动作较慢而已。事实上,互联网在美国最早最成熟的商业模式就是这一套,二十多年前就已出现并蓬勃发展至今。不过,无论在金融服务业还是在网络业,都没有什么公司因此脱颖而出,其原因无非是家家都做,没什么创新,最好的结果是获得摊薄的平均利润。为此今天再创一个新概念毫无必要。
二是传统金融服务的扩展化,例如小额支付,小微企业信用调查,小额贷款,灵活机动的市场营销,等等。这些事情在互联网出现之前,做起来费时费力,成本太高而收益太少,如今利用互联网就可以顺利实现。做这些事情也许可以创些收,但很难提高利润率,因为是个琐碎活。为此带上个互联网金融的大帽子有点言过其实。
三是全新的网络金融服务和产品,例如众筹投资和比特币。这些东西新则新矣,但属于小众市场和缝隙市场,不值得大动干戈,更不值得为此创立什么新概念。
四是全面的网络金融服务,或曰金融电商,例如金融商城和各类产品和服务的综合大卖场。这种模式以金融服务为基础,以阿里为样板,再掺杂以WEB2.0,云计算,移动互联网和大数据等时髦互联网概念,几乎是一个通吃的全面互联网服务平台,仅仅称之为互联网金融显得有点包容不住,过于狭窄了。
无论是单独拿出来看,还是把这四层意思合起来看,互联网金融这个概念从互联网业的角度看毫无新意可言。如果只从传统金融业的角度考量,互联网金融的概念也不是完全不能成立,但只有把它与非互联网金融服务或传统金融服务对立比较才有意义,但这好像也不是鼓吹这一概念者的本意。
过去若干年来,互联网业在不断创新中,蚕食着许多传统产业的世袭领地,同时创造出不少财富传奇。面对这一发展,传统金融业者一则以喜,二则以忧。喜的是互联网开拓出广阔的新边疆,金融服务有了更多更有力的方式向用户提供更多更好的产品和服务;忧的是金融服务有了新人,弄不好会砸了传统业者的饭碗。于是,在贪婪与恐惧的双重动力作用下,以攻为守的思路油然而生。既然一无所有的网络业者都可以尝试网络金融服务并大有斩获,那么传统金融业者有经验,有资本,有垄断,有用户,为什么不能后来居上呢?一个明显的区别在于,网络业者早在十数年前就开始了尝试,那时网络金融服务是被斥责,被打压,被怀疑的对象,历尽千辛在服务模式,商业模式和技术壁垒方面有所心得,垒起了一定的竞争门槛。而今天再做所谓互联网金融这种早已成为社会共识的东西,如果在差不多的时间内出现十个八个互联网金融服务平台,自相残杀还来不及,那还有气力与遥遥领先的网络业者竞争?别人贪婪我恐惧,别人恐惧我贪婪,巴菲特的警句值得谨记。如果别人贪婪我亦贪婪,相互抵消,结果为零。
如今世界正在步入大数据时代,为后来者提供了不可多得的战略空间和机会。当世界的万事万物都在化为数据存在,当各种产品和服务都已网络化和数据化,当五花八门的数据终端普及进入千家万户,是否以自己为中心提供各种网络服务已经变得没有过去那么重要,而获取和利用他人服务所产生的数据变得更加重要。基于某种服务所积累的数据价值在贬值,数量再多也算不上大数据,只有获取网络世界中全面的数据才有深度整合利用的价值。正因如此,传统金融服务商就大可不必邯郸学步,重复互联网运营商走过的道路,非要先建立各种非本业服务以获取本业之外的数据。
传统金融业者可以利用自身优势探索一条新路。与其他传统产业相比,金融服务业是电子化,网络化和数据化程度最高的产业之一,也许仅次于网络业和电信业。由长期系统的金融服务积累的数据完全可以在确保用户隐私和商业机密的前提下,与各行各业通过数据间的共享,交换和买卖以生成大数据,在此之上探索全新的产品和服务。当然,这样的战略就很难称之为互联网金融了,互联网金融这种概念从提出之日起就至少落后于产业发展前沿五年以上。使用大数据金融的概念,制定并实施大数据金融战略,更能体现金融业自身的实力和潜力,也更能与网络业及其他行业有机融合,平等竞争,在大数据时代找到自身生存发展的机会也更大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18