京公网安备 11010802034615号
经营许可证编号:京B2-20210330
供应链如何使用大数据
大数据可能被破坏或中断,但供应链管理不在其中之列。这不是说供应链没有改变。人们如何收集和分析数据,改变了供应链的沟通方式。事实上,供应链发生了巨大变化,咨询机构德勤公司发布了一份报告,取消了线性链,声称技术中断导致了“数字供应网络的兴起”。
除了这些转变,供应链管理人员已经适应了不同的工作。就像Excel改变了供应链报告的方式,大数据平台允许专业人员专注于大项目,而不是死记硬背的任务。
工作任务和对象的变化并不表明供应链管理的变化。。相反,随着大数据的兴起,供应链管理(因为一直存在)的重要性上升。随着世界连通性的增长,零售,制造,以及物流公司都需要一个能够适应变化的管理者。
供应链管理者起到重要作用不是因为他们可以执行的任务,而是大数据仅仅实现的愿景:提高效率,降低风险和改善客户服务。AdamMussomeli就是一位供应链管理者。
不同的链,相似的转变
“我们发现,在今天的供应链世界中,有许多使用案例,我们现在大约追踪400个左右。”Adam Mussomeli说,“但是有六个主要的分类,供应链的行业人士正试图做,或在某种程度上跨越任何行业。”
Mussomel表示,第一个分类是可见性,也就是物流可见性,以便能够跟踪和知道物品何时进入,以及产品何时离开工厂。然而,同样重要的是多层次可见性,而供应链管理者能够在其供应商的工厂或其他地方看到这个问题,并能够立即解决。
“第二个分类是获得更好的需求和供应同步。”他补充说,“人们所生产的产品希望是市场需要的,但事实证明市场没有。”或者,许多高管将推动项目接收产品和销售点数据,可能帮助他们调整生产以更好地满足需求。
第三个分类,管理人员正在寻求优化他们使用的履行渠道,消费者和物流数据实现的任务。基于这些数据,供应链管理者可以调整特定产品的运输类型,取货地点或销售点。例如,水果的销售和运输策略就与电器产品不同。
后面这三个用例类别旨在通过生产工具提高效率。供应链管理者可能寻求建立一个“智能互联产品”(第四个分类),Mussomeli说。制造商,仓库经理和零售商现在可以从传感器集成的产品中受益,这些产品可以召回,并通知管理者有待更改或需要补充。
与此类似,供应链受益于增加的资产智能(第五个分类),其中连接的机器或机架可以产生数据以警告管理者条件变化。
“最后一个分类是工人安全和生产力的全部概念。”他说。““那是使用增强现实技术来帮助在仓库拣货的一个例子,或采有一些其他形式的增强现实技术告诉某人需要补充的产品。”
在供应链的每个阶段提供洞察力
无论这些用例的类别如何,每个大数据项目都旨在为供应链管理人员提供洞察力,而不是信息。换句话说,大数据项目不仅仅是收集数据,而是能够做一些事情。
在零售层面,RFID标签正在取代作为存储产品数据和提高补货能力的一种方式。而标签的产品数据优势可以与更好的库存管理功能和增加的在线销售联系起来,最近的一项研究显示,96%的服装零售商也在做同样的事情。
“如果你想想在一家特定的零售商店发生了什么,想要补充那家商店的库存,就会想知道通过那个地方销售的所有商品,”市场营销执行副总裁Karin Bursa Logility说,“这是能够补充并确保他们有计划的库存的唯一方法。”
“作为供应链专业人士,我们希望采用大数据,因为它开始创造产品之间的依赖性和相关性。”她补充说,“它帮助我们寻找模式,提高未来产品需求的可预测性。”
物流供应商也受益于大数据。2017年第三方物流研究发现,98%的受访第三方物流企业认为数据驱动的决策对未来供应链将是至关重要的,另外86%的受访者认为它将成为核心竞争力。早期采用者也比比皆是,因为端到端可视性的驱动力为具有远程信息处理的货运公司,具有高效通信的港口,甚至具有实时监控的运输线路提供了优势。
虽然制造业案例研究通常不公开,但该行业是大数据的最大受益者之一。毕竟,随着物流供应商扩大其知名度,零售商增加产品数据,制造商可以使用这些数据更接近需求驱动的供应链。
在最近的一个案例研究中,Software AG公司报告了一个价值700亿美元的家用消费包装产品,医疗保健和药品制造行业能够通过其平台推出1,800种产品75%,并实现超过4,000家物流供应商的可见性。案例研究发现,从止痛药到婴儿洗剂的任何产品都可以在数分钟内轻松追踪。“消费者甚至可以在线查看产品信息,满足他们对即时答案的需求,增强他们对公司品牌的信任。”
无论是零售商还是制造商,大数据都允许供应链通过将产品和外部数据与业务决策同步来提高服务和效率。此外,增加的可见性允许企业在不利情况下识别和调整风险。
怎么堆叠?
然而,大数据项目的功效可能不取决于用例,目标或解决的问题,而是取决于企业的数字能力。
Software AG的供应链和制造业全球行业总监Sean Riley表示:“数据项目有时是一个挑战,特别是当进入运输方面时。不是每个公司都拥有先进的远程信息处理能力的卡车。”
因此,供应链管理者被迫平衡各种不同的技术能力,甚至在内部,同时参与一个新的数据项目。为此,德勤咨询公司创建了一个“数字堆栈”,以帮助可视化的数据可以应用于洞察的各个阶段。
德勤公司将企业的数字能力分为两个部分:数字核心和数字堆栈。核心是处理大数据项目所需的基本基础设施,能够接收网络数据,将其转换为可用格式,并独立处理。同时,堆栈是指可以从大数据项目中获得的不同层次的洞察能力。
每个层建立在另一层上,因此,更多的数据是联网的,其在核心层的自动化的连接性和潜力越大。同样,企业供应链的可见性越大,他们就越可能使用数据进行决策支持,从而做出战略决策。
供应链的方式可以受益于大数据的项目是显著的但是一般来说,供应链管理者用于启动新项目的原因和方法是相同的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21