
企业高管不能不知道的信息化常识
企业高管可以不懂IT技术,但不能不知道信息化常识,更不能以不懂信息化为荣,否则自己会因无法决策信息化重大事项而成为企业信息化最大的短板。
高管至少有以下三件事需要知道:
一、把信息化交给精通IT技术的人做不好,除非他有能力和时间精通业务。
若是高管认为业务信息化,就象买电脑、买Office一样买回来安装使用就可以,那么这个高管在信息化这件事上完全不合格,已无形中阻碍了公司信息化的步伐。
信息化的确有许多领域基本不用业务参与,比如建机房、布网络、买电脑,这是纯IT技术就能搞定的,但管理信息化(ERP、CRM、PLM、CAPP、MES、MRO)却不是那么简单,往往是从业务问题出发,结合公司战略,进行适度的业务变革,梳理精细的流程,用软件固化下来,并推进业务人员按变革后的业务体系运转,IT技术在此项工作中最多占三分之一。
业务信息化项目,需要业务、IT双精通的人才能真正领导,但实现上,业务、IT双精通的人很稀缺的,那么负责人至少必须精通业务,再由IT支持,才可能打造出好用的系统。如果这样的项目由IT牵头,尤其做多年纯IT技术支持、很少去了解业务的IT技术人员牵头,业务不太实质性参加,那么这样的系统从一开始就会注定用不成或不好用。只有希望变革的业务领导,才有可能推进此项变革,担子必须压在他的头上,而且要逼着他去学信息化并做好融合。
另外,如果牵头人是业务部门领导,那么可以建出业务部门内部好用的系统,不同业务部门会是信息孤岛;如果牵头人是条线领导,那么可以建出条线内部(跨部门)好用的系统,不同条线之间会是信息孤岛;要想做成公司内各条线、各部门互联互通,这个牵头人有且只能是一个人,那就是企业一把手。
二、信息化框架的选择是战略级问题,中途变更会导致信息化大厦坍塌
信息化框架对信息化整体而言,就象大楼的地基、承重墙、主梁一样重要,如果改动,那么大楼的危险性会大幅增加,除非你打算拆了重建。
信息化框架,用信息化的术语,叫架构。大型企业的信息化整体架构(不是指单个系统自身的架构),是需要专业的架构师来搭建,能承担这种工作的人,年薪至少在30-50万以上,绝对不是一般水准的IT工程师能干得了。
如果没有架构,系统建设多是面向业务部门建设的,建成的系统在部门内部看能解决问题,但面向上下游多部门时却发现无法共享集成。要实现集成,前期面向部门搭的“鸡窝”可能要拆了重建,鸡、鸭、兔子永远无法整合成老虎。出现这个问题的根本原因,就是前期建设期间没有架构意识,或者有意识但没有落地。
面向企业整体信息化架构,要采用SOA架构、一体化架构还是无架构,这是一个高管必须明白并且长期坚持的战略性问题,这个问题您有必要花点时间了解。大部分企业做了10-20年信息化可能都没有意识到这个问题,尚处于无架构的孤岛建设阶段,共享集成还只是个意识。
所谓一体化架构,指的是以某个大的应用系统为中心(比如SAP、Oracle,或者自主开发平台),将尽可能多的系统在此平台上开发(外部IT公司或内部开发团队),少量的外围系统,设法与此平台做接口实现集成。这种做法的天然优势,是应用功能和后台数据一体化,是过去大多数做得好的企业常采用的。这种架构,有个天然的缺陷,就是被所选的平台公司绑架,公司信息化命运随着这个平台公司而起落,平台不再发展了也会制约公司信息化水准提升。
所谓SOA架构,是把各种大大小小的信息系统(包括大到ERP系统、小到微信提醒)当作服务,每个服务有输入有输出,与处于中心位置的SOA系统(包括门户、流程、总线三个非常重要的中间件软件,还包括数据标准)进行数据交换。很显然,SOA架构是一种非常先进的架构,但这种架构一开始就要引进三个中间件软件,而且要建立企业级数据标准,前期投入大、产出小,看不到明显的效益,远没有直接建一个系统花钱少、见效快。虽然前期投入大、产出小,但后期会大量保护前期投资,所带来的节约会远远大于前期的投入。这种重要的信息化战略级问题决策,企业一把手当然必须明白。
三、统一数据标准是信息化的战略级基础工程,必须一开始就抓、常抓不懈。
数据是信息系统的生命,高质量的数据是系统统计分析正确结论的基础,是上下游部门、公司畅通沟通的基础。高质量的数据,必须是统一标准的,如果标准不统一,人眼去看还好一些,计算机根本就不认识。除了命名标准以外,编码标准、分类标准、统计口径,也都存在统一的问题。在同一个系统中,数据标准一般都能做到一致,无论大的系统还是小的系统,但如果跨不同的系统,则这个问题一般就较为严重。跨系统无法集成的原因,标准不统一是最难解决的,解决的唯一办法就是按两套标准把每条数据建立一一对应关系,形成翻译,这会导致数据重新整理、系统功能增加许多复杂功能,集成的代价将非常大。因此,统一标准,是IT领域战略级问题,高管要一开始就抓。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15