
汽车保险行业,大数据AI 应用的三大玩法
汽车保险行业的大数据人工智能应用(Insutech)是我最感兴趣的话题,在这个领域有三大流派:
第一大流派最值得关注,它们是以车信数据、精励联讯、凯泰铭科技、德联易控为代表的少数创新科技公司,它们的数据和模型技术侧重点不同,但都已经应用于实际生产,得到车险行业认可。
第二大流派是保险公司自身的风险控制技术运营部门,包括人保、平安在内的车险科技团队也在摸索,但从投入产出看,车险公司自身去研发大数据 AI 应用成本无法摊薄,投入的力度和可持续性可疑。
第三大流派是百融金服、百度等偏重用户画像和营销的 AI 通用解决方案供应商,这类服务的同质化比较严重,受互联网营销造假风潮影响,这类服务以往在汽车整车营销领域已经有应用,但效果不显著,要赢得结果导向的保险公司认同尚需时日。
对于第一大流派,几家科技公司的产品服务差异比较大。
车信数据的机器学习模型技术原理类似谷歌的 AlphaGo,大数据机器学习的产品服务既包括前端的承保展业,也包括后端的理赔反欺诈。从应用范围看,既可以是车险公司,也可以是车险中介机构,还可以是整车企业、4S 经销商集团。同样的技术逻辑,车信数据不仅服务车险公司,也服务汽车金融公司。目前看,车信数据是这个领域本土技术和数据数据能力最专业的公司,没有之一。随着更多数据的开放,以车信数据为代表的 Insutech 和 Fintech 公司会有更多用武之地。
第二大流派是保险公司自身的风控技术团队。本质看,保险公司的信息系统研发需求都是自发产生的,主要的信息系统研发也是中科软等大型软件公司的生意,但随着业务需求的变化,主要大型保险公司都建立了自己的科技研发团队,满足自身研发需求。风险控制这类核心需求更是自建研发团队的重点工作,但受限于技术迭代速度,在大数据机器学习 AI 领域,保险公司要短期积累研发团队还比较困难。因此,目前看,车险公司在承保端还停留在黑名单模式下,在理赔端还停留在传统规则引擎模式下。对于大数据 AI 技术的应用仍然处于探索阶段,我认为,接下来最靠谱的方式一定是建立自己的技术采购团队,尽快扶植和投资外部科技公司,加速创新,不仅保证国内技术领先,也需要借助一带一路,尽快进入全球车险市场。
第三大流派是百度等大数据技术提供商,由于数据敏感性,百度本身也参与投资车险公司,这导致车险企业与百度的此类服务存在应用障碍,保险公司不敢把自己的敏感数据交给潜在竞争对手。与此同时,由于百度的金融保险团队与大搜索团队并非同一团队,要体现百度在车险领域的大数据 AI 应用优势,仅仅提供技术是不够的,如果不能发挥大数据和大搜索的内部协同,给车险企业一个有竞争力的解决方案,很难在 Insutech 领域超越专业垂直服务供应商。当然,通过投资并购也有可能解决这个问题,但目前看,可以投资并购的标的并不多,懂这些的投资人更不多见,已经拿到国家大脑项目的百度要抓住这个机会,需要尽快在车险金融等领域建立专家顾问团队。
由于车险科技的创新仍然在路上,车险公司的业务保守性和监管政策的变化都会影响这个产业的发展,随着金融风控成为行业的主旋律,可以预见到未来几年车险公司在车险风控领域的投入会加大力度。无论哪个派别的车险科技都有很大机会成长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29