京公网安备 11010802034615号
经营许可证编号:京B2-20210330
汽车保险行业,大数据AI 应用的三大玩法
汽车保险行业的大数据人工智能应用(Insutech)是我最感兴趣的话题,在这个领域有三大流派:
第一大流派最值得关注,它们是以车信数据、精励联讯、凯泰铭科技、德联易控为代表的少数创新科技公司,它们的数据和模型技术侧重点不同,但都已经应用于实际生产,得到车险行业认可。
第二大流派是保险公司自身的风险控制技术运营部门,包括人保、平安在内的车险科技团队也在摸索,但从投入产出看,车险公司自身去研发大数据 AI 应用成本无法摊薄,投入的力度和可持续性可疑。
第三大流派是百融金服、百度等偏重用户画像和营销的 AI 通用解决方案供应商,这类服务的同质化比较严重,受互联网营销造假风潮影响,这类服务以往在汽车整车营销领域已经有应用,但效果不显著,要赢得结果导向的保险公司认同尚需时日。
对于第一大流派,几家科技公司的产品服务差异比较大。
车信数据的机器学习模型技术原理类似谷歌的 AlphaGo,大数据机器学习的产品服务既包括前端的承保展业,也包括后端的理赔反欺诈。从应用范围看,既可以是车险公司,也可以是车险中介机构,还可以是整车企业、4S 经销商集团。同样的技术逻辑,车信数据不仅服务车险公司,也服务汽车金融公司。目前看,车信数据是这个领域本土技术和数据数据能力最专业的公司,没有之一。随着更多数据的开放,以车信数据为代表的 Insutech 和 Fintech 公司会有更多用武之地。
第二大流派是保险公司自身的风控技术团队。本质看,保险公司的信息系统研发需求都是自发产生的,主要的信息系统研发也是中科软等大型软件公司的生意,但随着业务需求的变化,主要大型保险公司都建立了自己的科技研发团队,满足自身研发需求。风险控制这类核心需求更是自建研发团队的重点工作,但受限于技术迭代速度,在大数据机器学习 AI 领域,保险公司要短期积累研发团队还比较困难。因此,目前看,车险公司在承保端还停留在黑名单模式下,在理赔端还停留在传统规则引擎模式下。对于大数据 AI 技术的应用仍然处于探索阶段,我认为,接下来最靠谱的方式一定是建立自己的技术采购团队,尽快扶植和投资外部科技公司,加速创新,不仅保证国内技术领先,也需要借助一带一路,尽快进入全球车险市场。
第三大流派是百度等大数据技术提供商,由于数据敏感性,百度本身也参与投资车险公司,这导致车险企业与百度的此类服务存在应用障碍,保险公司不敢把自己的敏感数据交给潜在竞争对手。与此同时,由于百度的金融保险团队与大搜索团队并非同一团队,要体现百度在车险领域的大数据 AI 应用优势,仅仅提供技术是不够的,如果不能发挥大数据和大搜索的内部协同,给车险企业一个有竞争力的解决方案,很难在 Insutech 领域超越专业垂直服务供应商。当然,通过投资并购也有可能解决这个问题,但目前看,可以投资并购的标的并不多,懂这些的投资人更不多见,已经拿到国家大脑项目的百度要抓住这个机会,需要尽快在车险金融等领域建立专家顾问团队。
由于车险科技的创新仍然在路上,车险公司的业务保守性和监管政策的变化都会影响这个产业的发展,随着金融风控成为行业的主旋律,可以预见到未来几年车险公司在车险风控领域的投入会加大力度。无论哪个派别的车险科技都有很大机会成长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21