京公网安备 11010802034615号
经营许可证编号:京B2-20210330
中国大数据进入“挖掘”时代:一片蓝海 潜力巨大
近日,一场围绕数据挖掘的全球赛事――2017中国国际大数据挖掘大赛在我国首个大数据试验区贵州宣布启动。
一堆毫无交集的数据,经过一番交融荟萃,催生出全新的应用,激发出全新的商业模式,孕育出新的产业,培育出新的经济增长点,数据挖掘显现的这一系列价值,正将中国推向一个以数据挖掘为核心的大数据价值输出新时代。
“真正的大数据就体现在大数据的深度挖掘应用。”中科院院士、北京理工大学副校长梅宏在一次大数据论坛上表示。
上述大赛组委会的一位负责人则告诉记者,相对于采集、储存,数据挖掘是大数据走向应用创造价值的关键。贵州在开放数据的同时,也在全力进行数据挖掘,就是要尽快逼出大数据的价值,让大数据战略释放出大红利。
正如该负责人所言,数据开放和挖掘是“两手都要抓”,因为丰富的数据源是进行大数据挖掘的前提。
德勤最新发布报告《2017德勤技术趋势》指出,数据资源正在指数级的增长,到2020年,全球的数字预计将达到44泽字节(zettabytes)。
尽管数据资源在全球呈指数级增长,但是数据资源的开放和共享程度却亟待提升。“从国际上看,政府数据开放还处于初期阶段,主要通过制定战略或政策文件形式指导开放。”中国信息通信研究院互联网法律研究中心主任工程师杨筱敏说。
杨筱敏指出,2015年中国密集发布了多个相关文件,其中最主要的是国务院《促进大数据发展行动纲要》。该文件对相关政策进行了梳理,提出在开放前提下加强安全和隐私保护,在数据开放的思路上增量先行,提出在2018年底前建成国家统一的数据开放平台。
记者梳理发现,北京、上海、浙江、青岛、武汉地已建立了专门的政府数据开放平台。最近,河北省和安徽省均表示要在2018年底前初步建成政府数据开放平台。
在此次大赛启动会上,来自贵阳、北京、上海、深圳、广州、杭州等17个国内政府数据开放先行城市的代表,共同发布了《共同促进数据开放及应用行动宣言》,呼吁共同努力促进政府数据开放。
数据挖掘行业的前景如何?移动信息化研究中心2月10日发布的《2016中国大数据市场研究报告》显示,国内大数据企业此前主要聚焦在技术壁垒较低的应用、可视化等环节,而在存储和挖掘等环节,极少有企业切入。
但到了2016年,情况发生变化。该报告显示,从2013年到2016年,数据挖掘在大数据产业链中的分布情况从4.1%上升到9.2%。
该报告还显示,从大数据主要产业链市场份额占上看,数据存储约占12.5%,存储14.7%,应用7.9%,挖掘占比最高,为17.3%。报告认为产业链纵向各环节均属蓝海市场,而挖掘高风险与高收益并存。
麦肯锡更是对数据挖掘大唱赞歌。麦肯锡全球研究所一份报告指出,到2025年,物联网11.1万亿美元的年产值中60%将来自于对数据的整合和挖掘。
事实上,国内资本看好大数据挖掘这片市场,多数大数据创新企业在A轮或A轮以前可以融到数千万的启动资金,极大程度的催熟创新企业的成长。
资本的热捧下,人工智能(AI)、深度学习等大数据挖掘技术和工具的概念也烈焰高涨。时代呼唤新的“矿工”,寻找新的挖掘技术和工具,成为抢占大数据风口的制高点,关于数据挖掘的赛事也成为外界观察大数据脉动的风向标。
此次作为大数据挖掘大赛的东道主贵州只是全球大数据浪潮的缩影。无论中国的西部,还是美国的硅谷,“挖掘”的声音在全球同步响起,汹涌澎湃。数据资源的开放,挖掘工具的进步,商业前景的清晰,数据挖掘行业未来潜力巨大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15