京公网安备 11010802034615号
经营许可证编号:京B2-20210330
中国大数据进入“挖掘”时代:一片蓝海 潜力巨大
近日,一场围绕数据挖掘的全球赛事――2017中国国际大数据挖掘大赛在我国首个大数据试验区贵州宣布启动。
一堆毫无交集的数据,经过一番交融荟萃,催生出全新的应用,激发出全新的商业模式,孕育出新的产业,培育出新的经济增长点,数据挖掘显现的这一系列价值,正将中国推向一个以数据挖掘为核心的大数据价值输出新时代。
“真正的大数据就体现在大数据的深度挖掘应用。”中科院院士、北京理工大学副校长梅宏在一次大数据论坛上表示。
上述大赛组委会的一位负责人则告诉记者,相对于采集、储存,数据挖掘是大数据走向应用创造价值的关键。贵州在开放数据的同时,也在全力进行数据挖掘,就是要尽快逼出大数据的价值,让大数据战略释放出大红利。
正如该负责人所言,数据开放和挖掘是“两手都要抓”,因为丰富的数据源是进行大数据挖掘的前提。
德勤最新发布报告《2017德勤技术趋势》指出,数据资源正在指数级的增长,到2020年,全球的数字预计将达到44泽字节(zettabytes)。
尽管数据资源在全球呈指数级增长,但是数据资源的开放和共享程度却亟待提升。“从国际上看,政府数据开放还处于初期阶段,主要通过制定战略或政策文件形式指导开放。”中国信息通信研究院互联网法律研究中心主任工程师杨筱敏说。
杨筱敏指出,2015年中国密集发布了多个相关文件,其中最主要的是国务院《促进大数据发展行动纲要》。该文件对相关政策进行了梳理,提出在开放前提下加强安全和隐私保护,在数据开放的思路上增量先行,提出在2018年底前建成国家统一的数据开放平台。
记者梳理发现,北京、上海、浙江、青岛、武汉地已建立了专门的政府数据开放平台。最近,河北省和安徽省均表示要在2018年底前初步建成政府数据开放平台。
在此次大赛启动会上,来自贵阳、北京、上海、深圳、广州、杭州等17个国内政府数据开放先行城市的代表,共同发布了《共同促进数据开放及应用行动宣言》,呼吁共同努力促进政府数据开放。
数据挖掘行业的前景如何?移动信息化研究中心2月10日发布的《2016中国大数据市场研究报告》显示,国内大数据企业此前主要聚焦在技术壁垒较低的应用、可视化等环节,而在存储和挖掘等环节,极少有企业切入。
但到了2016年,情况发生变化。该报告显示,从2013年到2016年,数据挖掘在大数据产业链中的分布情况从4.1%上升到9.2%。
该报告还显示,从大数据主要产业链市场份额占上看,数据存储约占12.5%,存储14.7%,应用7.9%,挖掘占比最高,为17.3%。报告认为产业链纵向各环节均属蓝海市场,而挖掘高风险与高收益并存。
麦肯锡更是对数据挖掘大唱赞歌。麦肯锡全球研究所一份报告指出,到2025年,物联网11.1万亿美元的年产值中60%将来自于对数据的整合和挖掘。
事实上,国内资本看好大数据挖掘这片市场,多数大数据创新企业在A轮或A轮以前可以融到数千万的启动资金,极大程度的催熟创新企业的成长。
资本的热捧下,人工智能(AI)、深度学习等大数据挖掘技术和工具的概念也烈焰高涨。时代呼唤新的“矿工”,寻找新的挖掘技术和工具,成为抢占大数据风口的制高点,关于数据挖掘的赛事也成为外界观察大数据脉动的风向标。
此次作为大数据挖掘大赛的东道主贵州只是全球大数据浪潮的缩影。无论中国的西部,还是美国的硅谷,“挖掘”的声音在全球同步响起,汹涌澎湃。数据资源的开放,挖掘工具的进步,商业前景的清晰,数据挖掘行业未来潜力巨大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16