
我们不是大数据的人质
钱钟书先生写过一篇妙文,说从整个历史来看,古代其实相当于人类的小孩子时期,先前是幼稚的,经过了千百年的长进,慢慢才到了现代。时代越是古旧,它的历史就越短,时代越是在后,它积累的阅历越是深厚,年龄就越多。所以,总结来说,我们反而是我们祖父的前辈,上古三代反不如现代悠久古老。
现代人完全可以这样对待我们的历史和传统。我们的时代正在用这样的一种方式瓦解经典,时间再也不是淘洗作品的永恒标准,因为传统无法解释现代人的经验,历史也无法应对高速变化的现实,共识已经瓦解成了个人主义的炮灰,经典备受质疑,经典之中也许并无圣人之言,很可能都是无用的废话——如果按照现如今大数据的标准,所有的经典都应该抛弃在垃圾堆,因为其中撰写的都是无用之言和可疑之言,缺乏合理的大数据的论证。
这话说得有些滑稽,但确实是切中要害的现实概括:大数据神话正在横扫一切领域。原本我们以为大数据只能在科学等实证领域兴风作浪,后来才发现,大数据神话的野心是掌控一切现实,就连人文学科,也同样需要大数据的支撑,没有大数据支撑的文章都是耍流氓。以前,我们写文章会习惯性地写,苏格拉底说过,未经省察的人生是不值得过的。现在写作就会说,根据统计数据显示,或者根据某份权威的调查报告的统计数字,未经省察的人生幸福指数只有20%-40%左右。我们时代最流行的阅读是别人替你读书,把书的内容划重点,归纳和总结出各种所谓的“干货”和教条,然后塞给你,你马上就觉得自己变成了博学多知的百科全书——这就是现在“逻辑思维”正在推广的学习方式。我们渴望的知识不再是经过时间的淘洗依然存在的经典,我们最想获得的知识是维基百科。
按照现在最时髦的理论——其实就是流行的《未来简史》《大数据时代》之类通俗读物——人类所有的知识都可以归纳为某种算法。比如在中世纪,获得知识的公式是:知识=经文 逻辑。简单说就是,如果你先想要知道某个问题的答案,中世纪的人会阅读相关经文,然后用中世纪逻辑来理解经文的确切含义。
而进入了科学革命时代之后,这个算法的公式就是:知识=实证数据 数学。以地球的形状为例,我们就要搜集相关的实证数据,观察太阳、月亮和行星,积累了足够的观测值,再用数学工具加以分析,利用三角学进行推断。
很显然,以上的两个公式就算是正确的,帮助我们解决了很多问题,但仍然具有很大的缺陷,它无法处理我们的人生价值和意义问题。所以,某些以创造公式为己任的人,又费尽脑汁创造了一个获得伦理知识的公式:知识=体验 敏感性。就是说,如果我们想知道任何道德问题的答案,我们需要连接到自己的内心体验,并以最大的敏感性来观察它。
但是这个就很模糊了,体验不能用数据测量,敏感性更是无迹可循,唯一依靠的只有自己的感觉。如何对自己的感觉进行量化,或者用流行的大数据进行统计呢?如果这些都属模糊的数据,这种知识如何获得?所以在伦理学领域,或者在我们寻找人生意义的问题上,无法用一个统一的公式获得共识——幸好如此,否则我们都利用这种算法计算我们的感受,那人生还有什么意外的乐趣?
我不知道大数据时代到来对生活影响有多大。我只知道,任何数据都无法解决我人生各个阶段的意义,更无法解决抑郁、自杀、快乐、苦闷等情绪上的问题。换句话说,千万不要被大数据洗脑和挟持,我们不是大数据的人质,大数据应该是我们解决某种问题的方式。好像在每一个时代都会有这样一个走火入魔的时期,我们有上帝和神学统治一切的时期,然后是启蒙理性统治的时代,现在是大数据时代。但它们都不能成为简化人生的公式和算法。就算人工智能可以使用各种算法赢得未来,就算机器战胜了人的大脑,它只能说明人类的大脑比机器聪明,而不是相反,更不会让我们对其顶礼膜拜。对我们而言,无论是人工智能,还是大数据,它们只能成为人类寻找生命意义的工具,而不是目的。它们代替不了人类的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18