京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们不是大数据的人质
钱钟书先生写过一篇妙文,说从整个历史来看,古代其实相当于人类的小孩子时期,先前是幼稚的,经过了千百年的长进,慢慢才到了现代。时代越是古旧,它的历史就越短,时代越是在后,它积累的阅历越是深厚,年龄就越多。所以,总结来说,我们反而是我们祖父的前辈,上古三代反不如现代悠久古老。
现代人完全可以这样对待我们的历史和传统。我们的时代正在用这样的一种方式瓦解经典,时间再也不是淘洗作品的永恒标准,因为传统无法解释现代人的经验,历史也无法应对高速变化的现实,共识已经瓦解成了个人主义的炮灰,经典备受质疑,经典之中也许并无圣人之言,很可能都是无用的废话——如果按照现如今大数据的标准,所有的经典都应该抛弃在垃圾堆,因为其中撰写的都是无用之言和可疑之言,缺乏合理的大数据的论证。
这话说得有些滑稽,但确实是切中要害的现实概括:大数据神话正在横扫一切领域。原本我们以为大数据只能在科学等实证领域兴风作浪,后来才发现,大数据神话的野心是掌控一切现实,就连人文学科,也同样需要大数据的支撑,没有大数据支撑的文章都是耍流氓。以前,我们写文章会习惯性地写,苏格拉底说过,未经省察的人生是不值得过的。现在写作就会说,根据统计数据显示,或者根据某份权威的调查报告的统计数字,未经省察的人生幸福指数只有20%-40%左右。我们时代最流行的阅读是别人替你读书,把书的内容划重点,归纳和总结出各种所谓的“干货”和教条,然后塞给你,你马上就觉得自己变成了博学多知的百科全书——这就是现在“逻辑思维”正在推广的学习方式。我们渴望的知识不再是经过时间的淘洗依然存在的经典,我们最想获得的知识是维基百科。
按照现在最时髦的理论——其实就是流行的《未来简史》《大数据时代》之类通俗读物——人类所有的知识都可以归纳为某种算法。比如在中世纪,获得知识的公式是:知识=经文 逻辑。简单说就是,如果你先想要知道某个问题的答案,中世纪的人会阅读相关经文,然后用中世纪逻辑来理解经文的确切含义。
而进入了科学革命时代之后,这个算法的公式就是:知识=实证数据 数学。以地球的形状为例,我们就要搜集相关的实证数据,观察太阳、月亮和行星,积累了足够的观测值,再用数学工具加以分析,利用三角学进行推断。
很显然,以上的两个公式就算是正确的,帮助我们解决了很多问题,但仍然具有很大的缺陷,它无法处理我们的人生价值和意义问题。所以,某些以创造公式为己任的人,又费尽脑汁创造了一个获得伦理知识的公式:知识=体验 敏感性。就是说,如果我们想知道任何道德问题的答案,我们需要连接到自己的内心体验,并以最大的敏感性来观察它。
但是这个就很模糊了,体验不能用数据测量,敏感性更是无迹可循,唯一依靠的只有自己的感觉。如何对自己的感觉进行量化,或者用流行的大数据进行统计呢?如果这些都属模糊的数据,这种知识如何获得?所以在伦理学领域,或者在我们寻找人生意义的问题上,无法用一个统一的公式获得共识——幸好如此,否则我们都利用这种算法计算我们的感受,那人生还有什么意外的乐趣?
我不知道大数据时代到来对生活影响有多大。我只知道,任何数据都无法解决我人生各个阶段的意义,更无法解决抑郁、自杀、快乐、苦闷等情绪上的问题。换句话说,千万不要被大数据洗脑和挟持,我们不是大数据的人质,大数据应该是我们解决某种问题的方式。好像在每一个时代都会有这样一个走火入魔的时期,我们有上帝和神学统治一切的时期,然后是启蒙理性统治的时代,现在是大数据时代。但它们都不能成为简化人生的公式和算法。就算人工智能可以使用各种算法赢得未来,就算机器战胜了人的大脑,它只能说明人类的大脑比机器聪明,而不是相反,更不会让我们对其顶礼膜拜。对我们而言,无论是人工智能,还是大数据,它们只能成为人类寻找生命意义的工具,而不是目的。它们代替不了人类的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21