京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们不是大数据的人质
钱钟书先生写过一篇妙文,说从整个历史来看,古代其实相当于人类的小孩子时期,先前是幼稚的,经过了千百年的长进,慢慢才到了现代。时代越是古旧,它的历史就越短,时代越是在后,它积累的阅历越是深厚,年龄就越多。所以,总结来说,我们反而是我们祖父的前辈,上古三代反不如现代悠久古老。
现代人完全可以这样对待我们的历史和传统。我们的时代正在用这样的一种方式瓦解经典,时间再也不是淘洗作品的永恒标准,因为传统无法解释现代人的经验,历史也无法应对高速变化的现实,共识已经瓦解成了个人主义的炮灰,经典备受质疑,经典之中也许并无圣人之言,很可能都是无用的废话——如果按照现如今大数据的标准,所有的经典都应该抛弃在垃圾堆,因为其中撰写的都是无用之言和可疑之言,缺乏合理的大数据的论证。
这话说得有些滑稽,但确实是切中要害的现实概括:大数据神话正在横扫一切领域。原本我们以为大数据只能在科学等实证领域兴风作浪,后来才发现,大数据神话的野心是掌控一切现实,就连人文学科,也同样需要大数据的支撑,没有大数据支撑的文章都是耍流氓。以前,我们写文章会习惯性地写,苏格拉底说过,未经省察的人生是不值得过的。现在写作就会说,根据统计数据显示,或者根据某份权威的调查报告的统计数字,未经省察的人生幸福指数只有20%-40%左右。我们时代最流行的阅读是别人替你读书,把书的内容划重点,归纳和总结出各种所谓的“干货”和教条,然后塞给你,你马上就觉得自己变成了博学多知的百科全书——这就是现在“逻辑思维”正在推广的学习方式。我们渴望的知识不再是经过时间的淘洗依然存在的经典,我们最想获得的知识是维基百科。
按照现在最时髦的理论——其实就是流行的《未来简史》《大数据时代》之类通俗读物——人类所有的知识都可以归纳为某种算法。比如在中世纪,获得知识的公式是:知识=经文 逻辑。简单说就是,如果你先想要知道某个问题的答案,中世纪的人会阅读相关经文,然后用中世纪逻辑来理解经文的确切含义。
而进入了科学革命时代之后,这个算法的公式就是:知识=实证数据 数学。以地球的形状为例,我们就要搜集相关的实证数据,观察太阳、月亮和行星,积累了足够的观测值,再用数学工具加以分析,利用三角学进行推断。
很显然,以上的两个公式就算是正确的,帮助我们解决了很多问题,但仍然具有很大的缺陷,它无法处理我们的人生价值和意义问题。所以,某些以创造公式为己任的人,又费尽脑汁创造了一个获得伦理知识的公式:知识=体验 敏感性。就是说,如果我们想知道任何道德问题的答案,我们需要连接到自己的内心体验,并以最大的敏感性来观察它。
但是这个就很模糊了,体验不能用数据测量,敏感性更是无迹可循,唯一依靠的只有自己的感觉。如何对自己的感觉进行量化,或者用流行的大数据进行统计呢?如果这些都属模糊的数据,这种知识如何获得?所以在伦理学领域,或者在我们寻找人生意义的问题上,无法用一个统一的公式获得共识——幸好如此,否则我们都利用这种算法计算我们的感受,那人生还有什么意外的乐趣?
我不知道大数据时代到来对生活影响有多大。我只知道,任何数据都无法解决我人生各个阶段的意义,更无法解决抑郁、自杀、快乐、苦闷等情绪上的问题。换句话说,千万不要被大数据洗脑和挟持,我们不是大数据的人质,大数据应该是我们解决某种问题的方式。好像在每一个时代都会有这样一个走火入魔的时期,我们有上帝和神学统治一切的时期,然后是启蒙理性统治的时代,现在是大数据时代。但它们都不能成为简化人生的公式和算法。就算人工智能可以使用各种算法赢得未来,就算机器战胜了人的大脑,它只能说明人类的大脑比机器聪明,而不是相反,更不会让我们对其顶礼膜拜。对我们而言,无论是人工智能,还是大数据,它们只能成为人类寻找生命意义的工具,而不是目的。它们代替不了人类的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17