
为大数据安全和科技金融建设支招
大数据安全和科技金融是备受业界人士关注的热点话题,今年年初,作为牵头人,何春潮、王克照主导并组织推进了 《关于重视和加强我国大数据领域数据安全的提案》《关于加快建设国家科技金融创新中心的提案》的提出和编写工作。两个提案成为民建中央向全国政协十二届五次会议提交38篇集体提案的一部分,在今年两会期间引起广泛关注。
“告诉你一个好消息,今年,我们IT小组的两个提案成为民建中央向全国政协十二届五次会议提交38篇集体提案的一部分。 ”民建中央企业委员会IT专业小组(简称“民建中央IT小组”)副组长兼秘书长何春潮对中国经济时报记者说。
“我们每年都会提出1-2篇与时俱进、反映社会热点、关注国家信息化建设的提案。今年这两篇提案是经过层层筛选、在民建633篇提案素材中脱颖而出的。 ”民建中央企业委员会IT专业小组副组长王克照补充说道。
大数据安全和科技金融是备受业界人士关注的热点话题,今年年初,作为牵头人,何春潮、王克照主导并组织推进了《关于重视和加强我国大数据领域数据安全的提案》《关于加快建设国家科技金融创新中心的提案》的提出和编写工作,包括杜承霖、白春红、马东晖、门嘉平等小组成员,中关村软联大数据专业小组及多个业内专家也共同参与了提案的编写。上述两个提案在今年两会期间引起广泛关注。
重视和加强大数据领域数据安全
目前,我国大数据产业正处于高速发展期,国家大数据体系正在形成,多种商业模式正在得到市场印证。
同时大数据时代也面临很多挑战,主要表现在数据的有效性、数据的复杂度、当前数据架构不能满足大数据的发展,大数据准确的服务能力不够,最为重要的是大数据的发展中数据安全问题正在对国家安全和个人安全带来新的威胁和风险。
王克照介绍,为建立自主可控的大数据安全评估例行程序,推行至各行业领域,防范日后出现严重的大数据安全隐患,在今年年初,由中关村软件和信息服务产业创新联盟发起,民建中央企业委员会IT专业小组参与,成立了“中关村软联大数据专业小组”,旨在研究大数据标准治理、大数据应用和大数据安全。经过多次论证研讨,民建中央IT小组提出了四方面建议。
首先,加快大数据安全领域的立法和完善相关法律。针对目前已有的《中华人民共和国网络安全法(草案)》,完善涉及国家数据安全的相关法律和法条,为大数据安全提供司法基础和法律依据;尽快颁布2008年全国人大常委会已启动立法程序的“个人信息数据保护法”,明确数据的所有权、使用权、知情权、交易权、隐私权等权益,明确违法的责任和后果。
其次,成立国家级大数据治理和安全标准工作组,建立健全我国数据治理及安全标准体系。一是建立政府主导、行业协会牵头、企业为主、产学研用联合的大数据安全标准工作组。二是建立多方沟通合作机制,通过标准化活动实施国家大数据安全标准体系作为监管、治理和发展的基本依据,作为大数据基础的安全保障。制定国家大数据安全关键标准。制定国家大数据治理、大数据安全标准。三是积极参与国际大数据相关标准制定,占据主导权。
再次,提升执法力和管控能力。建议主管政府部门牵头,针对涉及大数据安全的各类行为和事件,协同公安、电信、银行等执法部门和机构,对泄密、诈骗、危害社会和公共安全的违法行为,形成固定有效及时的处理流程和机制,使违法可被及时制止。对于各类型和性质的数据和信息安全违法的责任人,都要给予依法的刑事处罚,违法必究。
最后,形成自主可控的大数据核心技术和安全评价程序。建议积极发展基础、核心和前沿技术,使我国的大数据的关键领域不再有求于人。另外,建立自主可控的大数据安全评估例行程序,推行至各行业领域,防范日后出现严重的大数据安全隐患。
加快建设国家科技金融创新中心
“建设国家科技金融创新中心是势在必行的选择。 ”何春潮说,当前,全世界各经济体都试图通过创新来赢得增长,在这种背景下,以创新驱动作为重要抓手的过程中,如何引导金融资源向科技领域有效配置、财经科技与金融有效结合与双向驱动,形成科技金融(FinTech)产业在我国的快速发展,既是加快科技成果转化与产业化的重要举措,也是建设创新型国家的战略需要。
为解决当前科技金融创新中心存在的物理承载空间有限、难以起到示范效应、金融创新的速度跟不上科技创新的需求步伐、各层次资本市场的联动机制欠缺等问题,在《关于加快建设国家科技金融创新中心的提案》中,民建中央IT小组提出了如下对策。
一是进一步明确国家科技金融创新中心功能区的定位,加快国家科技金融创新中心功能区的规划建设及空间功能布局。中心应明确定位于科技研发中心、科技服务中心及政策发源地,更多地起到枢纽性作用,而将科技制造剥离,集约发展、集聚创新。
二是充分发挥高校和科研院所在科技金融领域的资源优势,促使其成为国家科技金融创新中心建设的核心单位。
三是借助互联网手段建立科技金融服务新模式,鼓励充分应用平台模式的互联网金融的发展思维,通过金融机构与互联网公司的合作,构建“互联网+金融”、集线上数据整合与线下金融服务于一体的全新商务平台模式。
四是明确并重视大数据建设工作,以完善科技金融信息与数据库建设为基础打造全球大数据中心,尝试打造大数据交易中心(交易所)。
此外,提案还建议推动知识产权资本化,为企业创新提供保障;加强科技金融人才队伍建设,尝试建立科技金融人才银行;注重科技金融的组织创新、产品创新以及资本市场创新;建立战略合作联盟,构建有效的科技金融生态环境。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15