
数据是企业未来新资产!你有,但你盘活了么
资产盘点必不可少!曾经,无论对于个人还是企业来说,资产仅仅包括货币、不动产、品牌价值等;可在当前互联网时代,虽然数据还没有被正式列入企业的资产负债表,但让“数据即资产”已经成为越来越多企业的核心战略。因此,如果你也重视并想拥有自己的“数据资产”,请看过来吧!
▊什么是数据资产?
不是所有的数据都能成为“资产”;或者说,什么样的数据才有资格列入“资产”呢?我们先来看看资产的定义,即指由企业过去经营交易或各项事项形成的,由企业拥有或控制的,预期会给企业带来经济利益的资源。以此类推,美数君给数据资产下的定义为:由企业在过去经营活动中产生、积累、沉淀的,能被企业拥有和掌控的,未来会给企业带来经济利益的数据资源。
一些企业虽然有很多数据,但如果都是来源多样、形式不同、杂乱无章的非结构化数据,不仅没有被有序整合到一起,也没有依据统一的数据标准化规范和流程,进行有效的关联、清洗、处理、细分,甚至从来就没有被应用过,反而增加了存储、服务器方面的成本。这些数据对于企业来说,就不是“资产”,甚至可以称为“废物”。
而真正可以称为“资产”的数据,应该主要有以下三大标准:
1、可控性
即企业对运营流程中各个环节的数据情况都能自己监管、把控,对产生、沉淀的数据拥有绝对的控制权和使用权。
2、可变现
即通过挖掘数据的价值,把数据再次应用到新场景中去:如为客户提供精准化产品和服务、衍生发展出更受客户欢迎的新产品和新业务、指导企业各项经营决策等,从而为企业带来实际的经济利益!
3、可衡量
即一方面是指处理过后的数据能以 GB、PB 等为计量单位存储起来以备后用;另一方面是指要对海量数据进行分类管理,用合理的指标加以衡量区分。还要定期进行数据清洗,保障数据的实时有效;当然,对于通过交易手段获得的数据,也要记录实际花费成本。
▊怎么拥有数据资产?
“巧妇难为无米之炊”,要管理和使用数据,进而形成数据资产,先得有数据!因此,企业首先要具备对分散而割裂的数据进行捕获和收集的功能。
1、别再只靠收集Cookie!
对于大多数企业来说,数字营销使用的用户数据多来自于 Cookie 技术。但美数君认为:Cookie 其中一个很大的局限是很多地方不能到达——嵌入代码的地方才有,没嵌入代码的地方就没有,以至于 Cookie 技术追踪到的数据量级不够大、维度不够多;其次,Cookie≠人,当多人共用同一个浏览器、或单人使用多个浏览器时,容易造成数据不准确;另外,当前移动互联网当道,而 Cookie 技术并不适用。因此,不难看出:Cookie 技术只是数据收集方式之一,但由于其局限性、不稳定性,企业不能再单纯基于 Cookie 进行数据收集,而是需要新的技术和方法来从多渠道进行有效的数据获取,如:通过跨设备统一 ID 识别技术、利用 LBS、POI 为代表的人群追踪技术、与拥有稳定数据源的公司进行战略合作等。
2、投放产生的数据归你么?
数据来源除了有:第一方企业自有数据(CRM、EDM 数据等)和第三方独立数据供应商提供的数据(BAT、运营商数据等),还有第二方数据。即通过与第三方平台合作所产生的数据,如选择 DSP 平台进行广告投放。但当企业选择 DSP 平台的时候,可能会面临这种境况:接入平台的自有数据、投放产生的数据或许有被泄露或反占有的风险,另外数据的控制权是属于平台的。
面对这一痛点,有的企业考虑自建 DSP+DMP 来增加对用户数据资产的管控、整合力度。但事实上,企业不仅会因建设广告技术平台而导致在战略和业务发展上分散精力;而且在数据、技术、算法、经验等方面,也缺乏自建平台的能力,其自建的 DSP 功能远不及一家专业的独立第三方 DSP。因此,企业选对好的独立第三方 DSP 平台,同时搭建完全属于自己的私有数据管理平台,即私有 DMP,无疑是最好的营销策略!
▊数据资产只是用来投放么?
对于大多数企业来说,数据可能更多应用于:洞察消费者行为、进行人群画像,进而指导广告投放。那难道大数据资产的唯一价值应用就是广告的精准投放吗?
答案当然是否定的!数据资产化之后,其会渐渐成为企业的战略资产,渗透企业生产运营各个环节,包括:投放前的预测和过滤、投放中的甄别和优化,以及投放后的监测与验证。甚至,数据资产还会深刻影响、变革着企业的商业模式和业务结构。因此,企业只有利用大数据技术和算法深入挖掘出数据背后的消费者行为、市场机制和规律等商业逻辑,才能够真正盘活数据资产、创造更多的商业价值!
对于大数据资产的未来,世界经济论坛报告曾经预测,“未来的大数据将成为新的财富高地,其价值可能会堪比石油”;大数据之父维克托也乐观表示,“数据列入企业资产负债表只是时间问题”...因此,企业现在开始收集、清理、分析、把控,并真正盘活、应用好数据资产,将决定未来的价值空间和生命周期——你有多少数据资产,就有多大竞争优势和市场份额!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28