
数据是企业未来新资产!你有,但你盘活了么
资产盘点必不可少!曾经,无论对于个人还是企业来说,资产仅仅包括货币、不动产、品牌价值等;可在当前互联网时代,虽然数据还没有被正式列入企业的资产负债表,但让“数据即资产”已经成为越来越多企业的核心战略。因此,如果你也重视并想拥有自己的“数据资产”,请看过来吧!
▊什么是数据资产?
不是所有的数据都能成为“资产”;或者说,什么样的数据才有资格列入“资产”呢?我们先来看看资产的定义,即指由企业过去经营交易或各项事项形成的,由企业拥有或控制的,预期会给企业带来经济利益的资源。以此类推,美数君给数据资产下的定义为:由企业在过去经营活动中产生、积累、沉淀的,能被企业拥有和掌控的,未来会给企业带来经济利益的数据资源。
一些企业虽然有很多数据,但如果都是来源多样、形式不同、杂乱无章的非结构化数据,不仅没有被有序整合到一起,也没有依据统一的数据标准化规范和流程,进行有效的关联、清洗、处理、细分,甚至从来就没有被应用过,反而增加了存储、服务器方面的成本。这些数据对于企业来说,就不是“资产”,甚至可以称为“废物”。
而真正可以称为“资产”的数据,应该主要有以下三大标准:
1、可控性
即企业对运营流程中各个环节的数据情况都能自己监管、把控,对产生、沉淀的数据拥有绝对的控制权和使用权。
2、可变现
即通过挖掘数据的价值,把数据再次应用到新场景中去:如为客户提供精准化产品和服务、衍生发展出更受客户欢迎的新产品和新业务、指导企业各项经营决策等,从而为企业带来实际的经济利益!
3、可衡量
即一方面是指处理过后的数据能以 GB、PB 等为计量单位存储起来以备后用;另一方面是指要对海量数据进行分类管理,用合理的指标加以衡量区分。还要定期进行数据清洗,保障数据的实时有效;当然,对于通过交易手段获得的数据,也要记录实际花费成本。
▊怎么拥有数据资产?
“巧妇难为无米之炊”,要管理和使用数据,进而形成数据资产,先得有数据!因此,企业首先要具备对分散而割裂的数据进行捕获和收集的功能。
1、别再只靠收集Cookie!
对于大多数企业来说,数字营销使用的用户数据多来自于 Cookie 技术。但美数君认为:Cookie 其中一个很大的局限是很多地方不能到达——嵌入代码的地方才有,没嵌入代码的地方就没有,以至于 Cookie 技术追踪到的数据量级不够大、维度不够多;其次,Cookie≠人,当多人共用同一个浏览器、或单人使用多个浏览器时,容易造成数据不准确;另外,当前移动互联网当道,而 Cookie 技术并不适用。因此,不难看出:Cookie 技术只是数据收集方式之一,但由于其局限性、不稳定性,企业不能再单纯基于 Cookie 进行数据收集,而是需要新的技术和方法来从多渠道进行有效的数据获取,如:通过跨设备统一 ID 识别技术、利用 LBS、POI 为代表的人群追踪技术、与拥有稳定数据源的公司进行战略合作等。
2、投放产生的数据归你么?
数据来源除了有:第一方企业自有数据(CRM、EDM 数据等)和第三方独立数据供应商提供的数据(BAT、运营商数据等),还有第二方数据。即通过与第三方平台合作所产生的数据,如选择 DSP 平台进行广告投放。但当企业选择 DSP 平台的时候,可能会面临这种境况:接入平台的自有数据、投放产生的数据或许有被泄露或反占有的风险,另外数据的控制权是属于平台的。
面对这一痛点,有的企业考虑自建 DSP+DMP 来增加对用户数据资产的管控、整合力度。但事实上,企业不仅会因建设广告技术平台而导致在战略和业务发展上分散精力;而且在数据、技术、算法、经验等方面,也缺乏自建平台的能力,其自建的 DSP 功能远不及一家专业的独立第三方 DSP。因此,企业选对好的独立第三方 DSP 平台,同时搭建完全属于自己的私有数据管理平台,即私有 DMP,无疑是最好的营销策略!
▊数据资产只是用来投放么?
对于大多数企业来说,数据可能更多应用于:洞察消费者行为、进行人群画像,进而指导广告投放。那难道大数据资产的唯一价值应用就是广告的精准投放吗?
答案当然是否定的!数据资产化之后,其会渐渐成为企业的战略资产,渗透企业生产运营各个环节,包括:投放前的预测和过滤、投放中的甄别和优化,以及投放后的监测与验证。甚至,数据资产还会深刻影响、变革着企业的商业模式和业务结构。因此,企业只有利用大数据技术和算法深入挖掘出数据背后的消费者行为、市场机制和规律等商业逻辑,才能够真正盘活数据资产、创造更多的商业价值!
对于大数据资产的未来,世界经济论坛报告曾经预测,“未来的大数据将成为新的财富高地,其价值可能会堪比石油”;大数据之父维克托也乐观表示,“数据列入企业资产负债表只是时间问题”...因此,企业现在开始收集、清理、分析、把控,并真正盘活、应用好数据资产,将决定未来的价值空间和生命周期——你有多少数据资产,就有多大竞争优势和市场份额!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18