
数据是企业未来新资产!你有,但你盘活了么
资产盘点必不可少!曾经,无论对于个人还是企业来说,资产仅仅包括货币、不动产、品牌价值等;可在当前互联网时代,虽然数据还没有被正式列入企业的资产负债表,但让“数据即资产”已经成为越来越多企业的核心战略。因此,如果你也重视并想拥有自己的“数据资产”,请看过来吧!
▊什么是数据资产?
不是所有的数据都能成为“资产”;或者说,什么样的数据才有资格列入“资产”呢?我们先来看看资产的定义,即指由企业过去经营交易或各项事项形成的,由企业拥有或控制的,预期会给企业带来经济利益的资源。以此类推,美数君给数据资产下的定义为:由企业在过去经营活动中产生、积累、沉淀的,能被企业拥有和掌控的,未来会给企业带来经济利益的数据资源。
一些企业虽然有很多数据,但如果都是来源多样、形式不同、杂乱无章的非结构化数据,不仅没有被有序整合到一起,也没有依据统一的数据标准化规范和流程,进行有效的关联、清洗、处理、细分,甚至从来就没有被应用过,反而增加了存储、服务器方面的成本。这些数据对于企业来说,就不是“资产”,甚至可以称为“废物”。
而真正可以称为“资产”的数据,应该主要有以下三大标准:
1、可控性
即企业对运营流程中各个环节的数据情况都能自己监管、把控,对产生、沉淀的数据拥有绝对的控制权和使用权。
2、可变现
即通过挖掘数据的价值,把数据再次应用到新场景中去:如为客户提供精准化产品和服务、衍生发展出更受客户欢迎的新产品和新业务、指导企业各项经营决策等,从而为企业带来实际的经济利益!
3、可衡量
即一方面是指处理过后的数据能以 GB、PB 等为计量单位存储起来以备后用;另一方面是指要对海量数据进行分类管理,用合理的指标加以衡量区分。还要定期进行数据清洗,保障数据的实时有效;当然,对于通过交易手段获得的数据,也要记录实际花费成本。
▊怎么拥有数据资产?
“巧妇难为无米之炊”,要管理和使用数据,进而形成数据资产,先得有数据!因此,企业首先要具备对分散而割裂的数据进行捕获和收集的功能。
1、别再只靠收集Cookie!
对于大多数企业来说,数字营销使用的用户数据多来自于 Cookie 技术。但美数君认为:Cookie 其中一个很大的局限是很多地方不能到达——嵌入代码的地方才有,没嵌入代码的地方就没有,以至于 Cookie 技术追踪到的数据量级不够大、维度不够多;其次,Cookie≠人,当多人共用同一个浏览器、或单人使用多个浏览器时,容易造成数据不准确;另外,当前移动互联网当道,而 Cookie 技术并不适用。因此,不难看出:Cookie 技术只是数据收集方式之一,但由于其局限性、不稳定性,企业不能再单纯基于 Cookie 进行数据收集,而是需要新的技术和方法来从多渠道进行有效的数据获取,如:通过跨设备统一 ID 识别技术、利用 LBS、POI 为代表的人群追踪技术、与拥有稳定数据源的公司进行战略合作等。
2、投放产生的数据归你么?
数据来源除了有:第一方企业自有数据(CRM、EDM 数据等)和第三方独立数据供应商提供的数据(BAT、运营商数据等),还有第二方数据。即通过与第三方平台合作所产生的数据,如选择 DSP 平台进行广告投放。但当企业选择 DSP 平台的时候,可能会面临这种境况:接入平台的自有数据、投放产生的数据或许有被泄露或反占有的风险,另外数据的控制权是属于平台的。
面对这一痛点,有的企业考虑自建 DSP+DMP 来增加对用户数据资产的管控、整合力度。但事实上,企业不仅会因建设广告技术平台而导致在战略和业务发展上分散精力;而且在数据、技术、算法、经验等方面,也缺乏自建平台的能力,其自建的 DSP 功能远不及一家专业的独立第三方 DSP。因此,企业选对好的独立第三方 DSP 平台,同时搭建完全属于自己的私有数据管理平台,即私有 DMP,无疑是最好的营销策略!
▊数据资产只是用来投放么?
对于大多数企业来说,数据可能更多应用于:洞察消费者行为、进行人群画像,进而指导广告投放。那难道大数据资产的唯一价值应用就是广告的精准投放吗?
答案当然是否定的!数据资产化之后,其会渐渐成为企业的战略资产,渗透企业生产运营各个环节,包括:投放前的预测和过滤、投放中的甄别和优化,以及投放后的监测与验证。甚至,数据资产还会深刻影响、变革着企业的商业模式和业务结构。因此,企业只有利用大数据技术和算法深入挖掘出数据背后的消费者行为、市场机制和规律等商业逻辑,才能够真正盘活数据资产、创造更多的商业价值!
对于大数据资产的未来,世界经济论坛报告曾经预测,“未来的大数据将成为新的财富高地,其价值可能会堪比石油”;大数据之父维克托也乐观表示,“数据列入企业资产负债表只是时间问题”...因此,企业现在开始收集、清理、分析、把控,并真正盘活、应用好数据资产,将决定未来的价值空间和生命周期——你有多少数据资产,就有多大竞争优势和市场份额!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15