京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据是企业未来新资产!你有,但你盘活了么
资产盘点必不可少!曾经,无论对于个人还是企业来说,资产仅仅包括货币、不动产、品牌价值等;可在当前互联网时代,虽然数据还没有被正式列入企业的资产负债表,但让“数据即资产”已经成为越来越多企业的核心战略。因此,如果你也重视并想拥有自己的“数据资产”,请看过来吧!
▊什么是数据资产?
不是所有的数据都能成为“资产”;或者说,什么样的数据才有资格列入“资产”呢?我们先来看看资产的定义,即指由企业过去经营交易或各项事项形成的,由企业拥有或控制的,预期会给企业带来经济利益的资源。以此类推,美数君给数据资产下的定义为:由企业在过去经营活动中产生、积累、沉淀的,能被企业拥有和掌控的,未来会给企业带来经济利益的数据资源。
一些企业虽然有很多数据,但如果都是来源多样、形式不同、杂乱无章的非结构化数据,不仅没有被有序整合到一起,也没有依据统一的数据标准化规范和流程,进行有效的关联、清洗、处理、细分,甚至从来就没有被应用过,反而增加了存储、服务器方面的成本。这些数据对于企业来说,就不是“资产”,甚至可以称为“废物”。
而真正可以称为“资产”的数据,应该主要有以下三大标准:
1、可控性
即企业对运营流程中各个环节的数据情况都能自己监管、把控,对产生、沉淀的数据拥有绝对的控制权和使用权。
2、可变现
即通过挖掘数据的价值,把数据再次应用到新场景中去:如为客户提供精准化产品和服务、衍生发展出更受客户欢迎的新产品和新业务、指导企业各项经营决策等,从而为企业带来实际的经济利益!
3、可衡量
即一方面是指处理过后的数据能以 GB、PB 等为计量单位存储起来以备后用;另一方面是指要对海量数据进行分类管理,用合理的指标加以衡量区分。还要定期进行数据清洗,保障数据的实时有效;当然,对于通过交易手段获得的数据,也要记录实际花费成本。
▊怎么拥有数据资产?
“巧妇难为无米之炊”,要管理和使用数据,进而形成数据资产,先得有数据!因此,企业首先要具备对分散而割裂的数据进行捕获和收集的功能。
1、别再只靠收集Cookie!
对于大多数企业来说,数字营销使用的用户数据多来自于 Cookie 技术。但美数君认为:Cookie 其中一个很大的局限是很多地方不能到达——嵌入代码的地方才有,没嵌入代码的地方就没有,以至于 Cookie 技术追踪到的数据量级不够大、维度不够多;其次,Cookie≠人,当多人共用同一个浏览器、或单人使用多个浏览器时,容易造成数据不准确;另外,当前移动互联网当道,而 Cookie 技术并不适用。因此,不难看出:Cookie 技术只是数据收集方式之一,但由于其局限性、不稳定性,企业不能再单纯基于 Cookie 进行数据收集,而是需要新的技术和方法来从多渠道进行有效的数据获取,如:通过跨设备统一 ID 识别技术、利用 LBS、POI 为代表的人群追踪技术、与拥有稳定数据源的公司进行战略合作等。
2、投放产生的数据归你么?
数据来源除了有:第一方企业自有数据(CRM、EDM 数据等)和第三方独立数据供应商提供的数据(BAT、运营商数据等),还有第二方数据。即通过与第三方平台合作所产生的数据,如选择 DSP 平台进行广告投放。但当企业选择 DSP 平台的时候,可能会面临这种境况:接入平台的自有数据、投放产生的数据或许有被泄露或反占有的风险,另外数据的控制权是属于平台的。
面对这一痛点,有的企业考虑自建 DSP+DMP 来增加对用户数据资产的管控、整合力度。但事实上,企业不仅会因建设广告技术平台而导致在战略和业务发展上分散精力;而且在数据、技术、算法、经验等方面,也缺乏自建平台的能力,其自建的 DSP 功能远不及一家专业的独立第三方 DSP。因此,企业选对好的独立第三方 DSP 平台,同时搭建完全属于自己的私有数据管理平台,即私有 DMP,无疑是最好的营销策略!
▊数据资产只是用来投放么?
对于大多数企业来说,数据可能更多应用于:洞察消费者行为、进行人群画像,进而指导广告投放。那难道大数据资产的唯一价值应用就是广告的精准投放吗?
答案当然是否定的!数据资产化之后,其会渐渐成为企业的战略资产,渗透企业生产运营各个环节,包括:投放前的预测和过滤、投放中的甄别和优化,以及投放后的监测与验证。甚至,数据资产还会深刻影响、变革着企业的商业模式和业务结构。因此,企业只有利用大数据技术和算法深入挖掘出数据背后的消费者行为、市场机制和规律等商业逻辑,才能够真正盘活数据资产、创造更多的商业价值!
对于大数据资产的未来,世界经济论坛报告曾经预测,“未来的大数据将成为新的财富高地,其价值可能会堪比石油”;大数据之父维克托也乐观表示,“数据列入企业资产负债表只是时间问题”...因此,企业现在开始收集、清理、分析、把控,并真正盘活、应用好数据资产,将决定未来的价值空间和生命周期——你有多少数据资产,就有多大竞争优势和市场份额!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21