 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		
	大数据时代 信息化成银行资管业务发展方向
我国银行理财市场经过10多年的发展,银行理财产品的发行数量和发行规模的增长不断创下历史新高。据不完全统计,截至2016年上半年,在中国80万亿元的金融资产管理的市场中,银行理财产品的规模已经达到了26万亿元,累计发行规模80万亿元,在中国资产管理市场上处于当之无愧的龙头地位。
随着大资管时代的到来,金融机构的经营方式从以存贷利差和发展规模为主转向注重争夺高收益、低风险的资产管理,从高资本、高信贷、低效益外延粗放式经营转向以轻资产加上投行为主内涵集约化经营,从间接融资、收益率的经营模式,回归代客理财,走综合金融解决方案服务商的道路,这些都意味着金融机构迫切需要加强大数据分析和资产管理。而中国银行业正在步入大数据时代的初级阶段,银行理财业务面临着很多挑战和机遇,如何在产品创新、市场营销、风险管理等方面运用大数据技术进行分析并做好资产管理,成为一个值得业界共同探讨的问题。
信息化:资管业务发展必然方向
在近日举行的第五届普益标准财富论坛上,普益标准首席经济学家刘阳在论坛上表示,在资产管理业务的发展中,越来越多的机构意识到数据和数据分析的作用,无论是从初始阶段对客户风险偏好的识别,还是针对客户需求和风险偏好做模型,再到接下来对组合的一个实时跟踪和随时调整,每一步都离不开大数据对客户需求准确的把握以及对市场走势的及时跟踪。
刘阳认为,未来资产和负债端仍然有下降的空间,但是长期债券还是有投资价值的,比如说资产端都加杠杆,财富端也慢慢接受这样的利率,然后大家的风险偏好下降,资产利率再下降,这个螺旋式下降还会持续一段时间。他建议,银行要保证分销巨头优势,这是银行的传统优势。分销巨头大部分是针对大众财富,或者说稍微低层次的高净值人群;对其他高层次的高净值人群可以做方案解决专家。
兴业银行资产管理部总经理顾卫平则提出,在大数据运用方面,银行资管行业无论是在产品端还是在投资端,都有可挖掘的大量机会。大数据其实是通过对大量的信息分析,解决信息不对称的问题。金融服务行业有很多的困惑,就是因为信息不对称。由于信息不对称,增加了交易成本。大数据的应用就是能够很好地解决信息不对称的问题。
顾卫平表示,从投资端的应用来讲,信用风险管理、投资策略、资产组合、流动性管理等方面运用是较多的。银行资产管理业务部门建立了针对信用风险的研究团队,专门来管理标准的信用资产的投资管理,收集大量的数据,长期跟踪管理人投资风格、投资行为,并且进行归因分析。“比如,去年债券比较热,需要看产品的收益是从哪里来的,多少是从票息来的,多少是从杠杆来的,多少是从交易来的,这样分析之后,市场的变化对哪一个账户影响大,每个人在哪一个方面能发挥他的能力,这就需要大量的数据分析才能做好管理。”
谈及对未来的展望,顾卫平用了三句话来概括:“第一,大数据是方兴未艾;第二,我国的资产管理业务必然是向信息化、系统化发展;第三,应用大数据根本目的是拓宽信息来源和支持投资决策。”
大数据:有助提升银行经营能力
江苏银行投行与资产管理总部总经理高增银介绍了大数据在江苏银行资管业务中的几个应用实例,他表示,大数据相关方法和技术有助于提升江苏银行经营管理能力,对该行资管业务在资产挖掘、风险防控、产品创新等方面均具有很好的应用价值。
高增银认为,当前商业银行资产管理业务有几个新动向:一方面,理财产品收益率与所配置资产的价格均大幅下降,但资产价格下降速度更快,理财业务经营难度加大。他表示,今年5月,非结构性人民币理财产品平均预期收益率已降至3.97%,正式迈入“3时代”,降幅之大、速度之快超出预期。具体到各家银行,则略有差异,农商行与城商行的理财产品收益率在各类银行中依然处于最高水平,股份制银行次之,大型商业银行则最低。相比大行,中小银行的理财客户对收益率的敏感度更高,中小银行理财资金成本压力也最大。
另一方面,随着利差缩小,理财资产配置难度加大,资管业务投行化趋势明显。银行资管业务迫切需要向投行业务延伸,提升优质资产的获取能力。在大类资产配置中,利率债与货币市场工具保流动性,比重不宜过高;信用债依然是主体,属于基础性资产配置,但收益率逐年走低,投资收益贡献度低。在脱虚入实、金融资本支持实体经济的要求下,资管业务也在创新思路,通过投行产品以多种方式投入实体经济,服务国家供给侧结构性改革。
据高增银预计,银行理财所投非标资产占比下降,权益性投资比重将进一步提升。2014年至2015年末,我国银行理财配置股票等权益类资产占比已由6%提升至8%,预计未来将进一步提升。但目前银行理财配置的权益类资产还主要集中于结构化二级市场配资、结构化定增等低风险、类固收形式,平层进入股市尚不多见。他表示,未来随着净值型理财产品推进,权益性资产的配置将更为灵活。
另外,高增银认为,在投行业务“基金化”的背景下,银行资管业务参与各类基金日趋活跃。他介绍说,目前常见的几种模式为:一是传统的单个非标项目向各类基金模式延伸,如各类基础设施投资基金、政策性PPP投资基金、产业投资引导基金等;二是通过定增基金等形式参与一级半权益资产投资;三是通过与上市公司或其关联方、知名管理机构合作,共同设立并购基金,支持优势资本的低成本扩张,理财资金获取固定回报加浮动收益分成;四是与优秀的创投机构合作,积极进入私募股权投资领域。
高增银表示,各类证券化资产也成为理财资金配置新宠。随着证券化进程的推进,非标资产将逐渐退出历史舞台。
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22