京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据勾勒出当代女性美容群体的画像
美容,字面上理解就是美丽容颜,具体延伸为:人们利用化妆品修饰眉、眼、颊、唇、发、手等部位以美化容貌的行为。而现代意义上的“美容”己经扩大到四个方面:正确使用化妆品,适当接受美容服务,身体养生调理,必要时接受医学整容、整形术。
香港可诺丹婷国际美颜美体连锁有限公司对全国1500多家直营连锁店的上百万消费者进行了详尽分析,勾勒出当代女性美容群体的画像。让我们从大数据里面跟踪美容养生市场的发展,“她经济”真的是不容小觑。
一、哪个年龄段的女性最喜欢做美容?
据统计发现,美容院的消费群体中,25~35岁的女性顾客接近总数的一半。这个年龄段的女性同时面临就业和恋爱选择,会更加注重对自身的保养。35~45岁的女性顾客则达到了20%,这部分消费者大多掌握家庭财产大权,且拥有足够的闲暇时间和精力。
25岁以下和45岁以上的女性顾客所占比例分别为16%和17%。年轻的女性群体正值青春,而且经济相对不那么自由,去美容院的频次较低。45岁以上的女性虽然经济实力足够,都普遍缺乏现代年轻女性的美容意识。
二、这些爱美女性都从事什么职业?
据统计发现,喜欢美容的女性群体当中,以白领为主,约占1/3。其次是家庭主妇和金领阶层分别占比27%和24%。女性中的学生群体占比10%。
女性美容和职业有一定的关联。白领阶层是社会城市精英的中坚力量,足够的金钱和美容意识使她们成为美容消费的主力。家庭主妇比其他任何职业都拥有更多的时间来保养自己,而且这个年龄段的中国女性大都掌管家庭财政大权。学生群体虽然受制于经济不够独立,但也有很强的美容消费意愿。
三、这些女性都有哪些皮肤问题?
现代女性肌肤普遍比较脆弱,空气中的各种污染物以及外界环境的刺激都会导致肌肤敏感。根据统计的常规女性肤质类型划分,混合性、干性、油性分布比较均匀,分别占比31%、30%、28%,而敏感性肤质则占了11%。
女性或多或少都会有皮肤问题。其中皮肤有斑最集中,其次为暗黄无光泽,有黑头、毛孔粗大的人群也比较多。也有部分女性会出现黑眼圈、眼袋,皮肤出现皱纹,老化、松弛等。
四、她们愿意为美丽花多少钱?
不同年龄阶段的女性对于美容的态度差异巨大,根据的统计结果显示,从20岁开始美容消费金额逐渐上升,在35~40岁的时候达到人均每年消费31263元的高峰,40~50岁的女性则相对稳定,人均消费在每年2万元左右。而目前50岁以上的女性对美容的需求较弱。
五、女性最中意的美容项目是什么?
统计发现, 25岁以下女性的最喜欢的美容项目是面部清洁类。25-40岁的女性在关注自己皮肤护理和面部美容的同时,也开始关注身体的保养。而40岁以上女性则更加注重养生类型的美容产品和服务。年轻女性更偏重于皮肤护理,而随着年龄的增长,更多人开始关注身体机能的保养和养生。
六、除了美容,这些女性还有什么其他爱好?
据统计,除了热爱美容,女性爱好排行前列的是运动和旅游,分别为18%、16%。艺术和阅读也占据了高达15%和14%的比例。而美食和购物则只是达到了7%和13%。
这说明关注美丽的女性通常会关注自己的健康和生活,运动的占比也最高。喜欢旅游、阅读和艺术的女性更加懂得内外兼修。购物和美食则是女性最原始的爱好。
总体来看,随着消费升级,越来越多的女性开始关注美丽,为美丽消费。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22