京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据勾勒出当代女性美容群体的画像
美容,字面上理解就是美丽容颜,具体延伸为:人们利用化妆品修饰眉、眼、颊、唇、发、手等部位以美化容貌的行为。而现代意义上的“美容”己经扩大到四个方面:正确使用化妆品,适当接受美容服务,身体养生调理,必要时接受医学整容、整形术。
香港可诺丹婷国际美颜美体连锁有限公司对全国1500多家直营连锁店的上百万消费者进行了详尽分析,勾勒出当代女性美容群体的画像。让我们从大数据里面跟踪美容养生市场的发展,“她经济”真的是不容小觑。
一、哪个年龄段的女性最喜欢做美容?
据统计发现,美容院的消费群体中,25~35岁的女性顾客接近总数的一半。这个年龄段的女性同时面临就业和恋爱选择,会更加注重对自身的保养。35~45岁的女性顾客则达到了20%,这部分消费者大多掌握家庭财产大权,且拥有足够的闲暇时间和精力。
25岁以下和45岁以上的女性顾客所占比例分别为16%和17%。年轻的女性群体正值青春,而且经济相对不那么自由,去美容院的频次较低。45岁以上的女性虽然经济实力足够,都普遍缺乏现代年轻女性的美容意识。
二、这些爱美女性都从事什么职业?
据统计发现,喜欢美容的女性群体当中,以白领为主,约占1/3。其次是家庭主妇和金领阶层分别占比27%和24%。女性中的学生群体占比10%。
女性美容和职业有一定的关联。白领阶层是社会城市精英的中坚力量,足够的金钱和美容意识使她们成为美容消费的主力。家庭主妇比其他任何职业都拥有更多的时间来保养自己,而且这个年龄段的中国女性大都掌管家庭财政大权。学生群体虽然受制于经济不够独立,但也有很强的美容消费意愿。
三、这些女性都有哪些皮肤问题?
现代女性肌肤普遍比较脆弱,空气中的各种污染物以及外界环境的刺激都会导致肌肤敏感。根据统计的常规女性肤质类型划分,混合性、干性、油性分布比较均匀,分别占比31%、30%、28%,而敏感性肤质则占了11%。
女性或多或少都会有皮肤问题。其中皮肤有斑最集中,其次为暗黄无光泽,有黑头、毛孔粗大的人群也比较多。也有部分女性会出现黑眼圈、眼袋,皮肤出现皱纹,老化、松弛等。
四、她们愿意为美丽花多少钱?
不同年龄阶段的女性对于美容的态度差异巨大,根据的统计结果显示,从20岁开始美容消费金额逐渐上升,在35~40岁的时候达到人均每年消费31263元的高峰,40~50岁的女性则相对稳定,人均消费在每年2万元左右。而目前50岁以上的女性对美容的需求较弱。
五、女性最中意的美容项目是什么?
统计发现, 25岁以下女性的最喜欢的美容项目是面部清洁类。25-40岁的女性在关注自己皮肤护理和面部美容的同时,也开始关注身体的保养。而40岁以上女性则更加注重养生类型的美容产品和服务。年轻女性更偏重于皮肤护理,而随着年龄的增长,更多人开始关注身体机能的保养和养生。
六、除了美容,这些女性还有什么其他爱好?
据统计,除了热爱美容,女性爱好排行前列的是运动和旅游,分别为18%、16%。艺术和阅读也占据了高达15%和14%的比例。而美食和购物则只是达到了7%和13%。
这说明关注美丽的女性通常会关注自己的健康和生活,运动的占比也最高。喜欢旅游、阅读和艺术的女性更加懂得内外兼修。购物和美食则是女性最原始的爱好。
总体来看,随着消费升级,越来越多的女性开始关注美丽,为美丽消费。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16