
大数据产业园模式解读
事实上,在2013年大数据产业的概念就在业界引起了广泛的讨论,当年被称为大数据元年。近年来,随着大数据产业园的纷纷上马,各地也呈现出不同的发展模式。
贵阳:“一把手工程”群策群力模式
有业内人士指出,贵阳发展大数据产业的优势在于制度创新。“这是一把手工程。贵州省领导十分重视,愿意突破原来的限制。”该人士表示。
2014年6月,贵州省政府成立贵州省大数据产业发展领导小组,省委书记、省长陈敏尔亲自担任组长。
不仅如此,贵州省还有更为激进的规定:除有特殊需求外,所有省级政务部门将不再自行购买服务器、交换机、存储等硬件设备,不再自建机房,政府数据统一存到云上。
除了“一把手工程”,最引人关注的就是各信息技术以及互联网企业在贵阳的布局。
早在2012年,中国电信、移动、联通三大通信运营商投资150亿元在贵安新区建设数据中心基地。另外,阿里巴巴集团在去年就与贵州省政府签署合作协议共同开发“云上贵州”,利用阿里飞天云技术给贵州省政务部门提供数据开发利用和资源整合平台,现在贵州7个厅局41个系统已在该云平台上运行。而腾讯在今年5月也同贵州省达成了关于“互联网+”的全面深层合作协议,准备利用微信巨大的用户数量和移动在线功能,为贵州省定制一套“智慧城市”解决方案,使贵阳市未来的医疗、交通、人社等政府服务都通过微信完成。
但是,光引进企业不一定就有大数据产业,高级人才缺乏成为贵阳大数据产业发展的瓶颈。业内人士指出,“IT研发人才东西部差距很大,设计类、新媒体类的人才贵州也很缺,有些企业甚至把人送出去培养后再回来。”
西安:以产业联盟搭建合作平台模式
2014年5月23日,“陕西省大数据产业联盟”成立。该联盟以沣西新城为平台,以西咸新区信息产业园为载体,致力于打造陕西省大数据与云计算技术产业链、创新链和服务链,探索建立长效稳定的产学研合作机制。
随后,沣西新城管理委员会发布《西咸新区信息产业园投资优惠政策》,标志着沣西新城信息产业“政策洼地”进一步形成。据了解,优惠政策具有针对性强、阶梯扶持、鼓励创新的特点,将扶持对象精准定位为云计算、大数据、电子商务等信息类企业,一定规模企业统一执行陕西省大工业电价。同时,制定阶梯式的优惠措施,使大中小型企业均可享受扶持。目前,西咸新区信息产业园已经吸引微软公司、中国联通、中国移动、未来国际公司等一大批发展大数据产业的企业入驻。
除了旅游、商贸、物流等传统优势领域之外,西安还正在抢抓电子信息、“互联网+”、“一带一路”等重要机遇,发挥高校、科研院所集中的优势,通过企业等平台发挥创新驱动效应,研发、生产出了一系列具有较强竞争力的产品,极大地增强了经济活力,加快了陕西企业“走出去”的步伐,这在高新区、经开区、国际港务区等区域体现得尤为明显,引领着西安市乃至陕西经济的增长。
重庆:上中下游全产业链模式
早在2010年4月,重庆就启动了“云端计划”,提出要打造离岸和在岸数据处理中心,在2020年形成100万台服务器的规模。3年后,又制定了《大数据行动计划》,提出要加快大数据产业布局,到2017年,大数据产业成为重庆市经济发展的重要增长极。
2015年年初,阿里大数据云计算有限公司与重庆移动互联网产业园正式达成战略合作协议。按照协议,双方将共同打造大渡口区中小型企业创业云服务生态链以及政务云市场,为园区内企业提供从技术支持到应用服务的云计算整体解决方案,推动该区大数据产业健康快速发展。
同时进军重庆大数据产业的还有惠普、九次方大数据、华硕云端和东华软件等公司。加上此前的法国源讯、日本NEC和中兴等,重庆大数据产业引进的国内外行业巨头数量已达两位数。
不仅如此,在渝北区、大渡口区、江津区和南岸区等区规划的几大大数据产业园区,建设与招商进展也相当乐观。
仅凭先天优势,不可能绘成宏伟的蓝图。据了解,大数据产业链的上游是电信运营商的网络基础设施,中游是数据中心及云计算服务,下游是大数据应用。其中在上游,重庆明确提出要打造全国信息交换枢纽和全球重要的“国际信息港”;在中游,规划建设两江国际云计算产业园,使之成为数据处理中心及云计算服务基地;在下游,则将在民生服务、城市管理、行业应用及外包服务等重点领域开展大数据示范应用,以示范应用引领产业发展。
在此基础上,重庆还规划了一批大数据重点产业基地。主要包括渝北区的重庆仙桃数据谷、大渡口区的重庆移动互联网产业园、永川区的永川软件园以及南岸区的物联网产业园等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01