京公网安备 11010802034615号
经营许可证编号:京B2-20210330
促进大数据发展行动纲要:推动产业创新发展(3)
3 政府治理大数据工程
推动宏观调控决策支持、风险预警和执行监督大数据应用。统筹利用政府和社会数据资源,探索建立国家宏观调控决策支持、风险预警和执行监督大数据应用体系。到2018年,开展政府和社会合作开发利用大数据试点,完善金融、税收、审计、统计、农业、规划、消费、投资、进出口、城乡建设、劳动就业、收入分配、电力及产业运行、质量安全、节能减排等领域国民经济相关数据的采集和利用机制,推进各级政府按照统一体系开展数据采集和综合利用,加强对宏观调控决策的支撑。
推动信用信息共享机制和信用信息系统建设。加快建立统一社会信用代码制度,建立信用信息共享交换机制。充分利用社会各方面信息资源,推动公共信用数据与互联网、移动互联网、电子商务等数据的汇聚整合,鼓励互联网企业运用大数据技术建立市场化的第三方信用信息共享平台,使政府主导征信体系的共识性和互联网大数据征信平台的规模效应得到充分发挥,依托全国统一的信用信息共享交换平台,建设企业信用信息公示系统,实现覆盖各级政府、各类别信用主体的基础信用信息共享,初步建成社会信用体系,为经济高效运行提供全面准确的基础信用信息服务。
建设社会治理大数据应用体系。到2018年,围绕实施区域协调发展、新型城镇化等重大战略和主体功能区规划,在企业监管、质量安全、质量诚信、节能降耗、环境保护、食品安全、安全生产、信用体系建设、旅游服务等领域探索开展一批应用试点,打通政府部门、企事业单位之间的数据壁垒,实现合作开发和综合利用。实时采集并汇总分析政府部门和企事业单位的市场监管、检验检测、违法失信、企业生产经营、销售物流、投诉举报、消费维权等数据,有效促进各级政府社会治理能力提升。
8.加快民生服务普惠化。结合新型城镇化发展、信息惠民工程实施和智慧城市建设,以优化提升民生服务、激发社会活力、促进大数据应用市场化服务为重点,引导鼓励企业和社会机构开展创新应用研究,深入发掘公共服务数据,在城乡建设、人居环境、健康医疗、社会救助、养老服务、劳动就业、社会保障、质量安全、文化教育、交通旅游、消费维权、城乡服务等领域开展大数据应用示范,推动传统公共服务数据与互联网、移动互联网、可穿戴设备等数据的汇聚整合,开发各类便民应用,优化公共资源配置,提升公共服务水平。
专栏4 公共服务大数据工程
医疗健康服务大数据。构建电子健康档案、电子病历数据库,建设覆盖公共卫生、医疗服务、医疗保障、药品供应、计划生育和综合管理业务的医疗健康管理和服务大数据应用体系。探索预约挂号、分级诊疗、远程医疗、检查检验结果共享、防治结合、医养结合、健康咨询等服务,优化形成规范、共享、互信的诊疗流程。鼓励和规范有关企事业单位开展医疗健康大数据创新应用研究,构建综合健康服务应用。
社会保障服务大数据。建设由城市延伸到农村的统一社会救助、社会福利、社会保障大数据平台,加强与相关部门的数据对接和信息共享,支撑大数据在劳动用工和社保基金监管、医疗保险对医疗服务行为监控、劳动保障监察、内控稽核以及人力资源社会保障相关政策制定和执行效果跟踪评价等方面的应用。利用大数据创新服务模式,为社会公众提供更为个性化、更具针对性的服务。
教育文化大数据。完善教育管理公共服务平台,推动教育基础数据的伴随式收集和全国互通共享。建立各阶段适龄入学人口基础数据库、学生基础数据库和终身电子学籍档案,实现学生学籍档案在不同教育阶段的纵向贯通。推动形成覆盖全国、协同服务、全网互通的教育资源云服务体系。探索发挥大数据对变革教育方式、促进教育公平、提升教育质量的支撑作用。加强数字图书馆、档案馆、博物馆、美术馆和文化馆等公益设施建设,构建文化传播大数据综合服务平台,传播中国文化,为社会提供文化服务。
交通旅游服务大数据。探索开展交通、公安、气象、安监、地震、测绘等跨部门、跨地域数据融合和协同创新。建立综合交通服务大数据平台,共同利用大数据提升协同管理和公共服务能力,积极吸引社会优质资源,利用交通大数据开展出行信息服务、交通诱导等增值服务。建立旅游投诉及评价全媒体交互中心,实现对旅游城市、重点景区游客流量的监控、预警和及时分流疏导,为规范市场秩序、方便游客出行、提升旅游服务水平、促进旅游消费和旅游产业转型升级提供有力支撑。
(二)推动产业创新发展,培育新兴业态,助力经济转型。
1.发展工业大数据。推动大数据在工业研发设计、生产制造、经营管理、市场营销、售后服务等产品全生命周期、产业链全流程各环节的应用,分析感知用户需求,提升产品附加价值,打造智能工厂。建立面向不同行业、不同环节的工业大数据资源聚合和分析应用平台。抓住互联网跨界融合机遇,促进大数据、物联网、云计算和三维(3D)打印技术、个性化定制等在制造业全产业链集成运用,推动制造模式变革和工业转型升级。
2.发展新兴产业大数据。大力培育互联网金融、数据服务、数据探矿、数据化学、数据材料、数据制药等新业态,提升相关产业大数据资源的采集获取和分析利用能力,充分发掘数据资源支撑创新的潜力,带动技术研发体系创新、管理方式变革、商业模式创新和产业价值链体系重构,推动跨领域、跨行业的数据融合和协同创新,促进战略性新兴产业发展、服务业创新发展和信息消费扩大,探索形成协同发展的新业态、新模式,培育新的经济增长点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20