
大数据预测分析技术如何帮助人类管理环境变化
为了应对气候变化产生的难题,各个国家应该根据精确的、实时的或者近乎实时的分析技术和方法制定卓越的行动计划。大数据和预测分析完全可以提供精准的实时或者近乎实时的分析技术。这些年以来,人们付诸了大量的实践行动,诸如Global Forest Watch、微软研究院的MadingleyModel以及GoogleEarth Engine就是这方面的研究成果。这些软件工具向人们展示了气候变化的速率,因此我们要对此做出快速的应急响应。大数据和预测分析技术可以让各方利益相关者快速处理大量数据信息,并生成准确的洞察。传感器正在搜集降雨、土壤以及森林覆盖率等各种数据变量,并帮助建立数据库之间的内在联系。我们可以很清楚地看到大数据和预测分析技术是或者将会成为政府能够采取的最重要的减轻气候变化影响的工具。
如果没有大数据和预测分析,对气候变化政策会有怎样的影响?
毫无疑问,没有大数据和预测分析技术的介入,有关季后变化的政策或者计划将会变得不痛不痒且力度不够深。没有大数据技术发挥作用的话,一些可能出现的场景,即使是出于想象情节,如下所示:
对于全世界有多少碳排放量需要减少的计算结果与实际情况相差甚远。我们想象以下这样的场景,如果城市采取解决方案在未来的5年内将来自所有汽车、空调和工厂的碳排放减少2个百分点,根据现在的情况,实际需要减少的碳排放量为5个百分点。减排量不够意味着全球气温的提升、疾病肆虐以及其他方面的问题。
自从冰川的融化速度开始变得比以往任何时候都要快,海平面的上升速度也在加快。这就让那些沿海城市身处危难的边缘。没有精准的分析和预测的话,房屋迁徙、重建计划以及其他的措施会有所耽搁而且也会不充足。
全球环境变化和生态失衡会进一步被忽视。除非更新以数据为基础的观点,并在正确的论坛上面提出,否则很难形成正确的观点。从数据的角度对环境和生态系统的变化进行比对和分析非常重要。
大数据和预测分析技术对气候变化政策的影响
针对气候变化现象的政策和战略已经受到了来自大数据和预测分析的深刻影响。政府和非政府机构已经在开发引领趋势的工具和技术帮助人们形成高级的行动计划。毋庸置疑,这些工具和技术都是以大数据为基础。每时每刻,关于温度变化、海平面、森林覆盖率以及碳排量的大量数据正在被收集和分析。这些变量数据之间具有内在的相互关联,为我们提供了可执行的洞察、预测以及那些以能够被执行的防御措施和前瞻性为基础的模式。
Surging Sea
它是由Climate Central这样一个非营利的独立组织开发的互动地图。SurgingSeas提供了整个美国关于海平面上升高度的数据信息。你可以用这个地图去发现不同地方的海平面上升的准确高度,查看洪水警告、行动计划、海平面模式、历史数据、嵌入式部件等等。
Google Earth Engine
GoogleEarth Engine的作用就是比较数年或者十几年的环境状态,找出问题所在并提供解决办法。以伊朗的乌尔米咸水湖为例,Google Earth显示在1984年,湖水的颜色为孔雀蓝,几年之后,颜色变成了绿色。到2012年却变成了棕色。同样,亚马逊热带雨林的砍伐现象也被跟踪。Google EarthEngine搜集了来自公开可用卫星图片资料来鉴定全球的环境破坏。
Global Forest Power
这个工具可以帮助你追踪全球森林的覆盖面积。这个工具以交互性地图的方式向用户提供一些关于森林覆盖、任何具体区域的森林砍伐以及森林火灾等信息。
Opower
能源消耗的降低对气候的调节具有非常积极的作用。节能减排的行动必须让全球的每一位市民参与,城镇居民经常会受到他们邻居的能源使用量的影响。Opower是一个分析能源使用情况的专业公司。他们分析民众使用能源的行为模式,并把每家每户能源使用情况的数据报告分发到业主手中,并将业主的数据与邻居的数据进行对比。自从公司在2007年成立以来,已经节省了将近60亿千瓦时的能源,这些节省下来的能源可以满足1百万人口的城市使用一整年。
读而思duersi我们能清楚的看到大数据和预测分析正在重新定义政府的气候变化政策。实际上,大数据看起来是气候变化政策不可或缺的帮手。大数据技术可以处理体量巨大且复杂的环境气候数据,建立有必要的相互联系并提供实时分析。上文提到的所有工具都可以提供实时的数据信息。然而事在人为,大数据能做的就这么多,至于大数据如何才能阻止气候变化的危害,关键还得在于利益相关者是否能够执行具体的行动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18