京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据预测分析技术如何帮助人类管理环境变化
为了应对气候变化产生的难题,各个国家应该根据精确的、实时的或者近乎实时的分析技术和方法制定卓越的行动计划。大数据和预测分析完全可以提供精准的实时或者近乎实时的分析技术。这些年以来,人们付诸了大量的实践行动,诸如Global Forest Watch、微软研究院的MadingleyModel以及GoogleEarth Engine就是这方面的研究成果。这些软件工具向人们展示了气候变化的速率,因此我们要对此做出快速的应急响应。大数据和预测分析技术可以让各方利益相关者快速处理大量数据信息,并生成准确的洞察。传感器正在搜集降雨、土壤以及森林覆盖率等各种数据变量,并帮助建立数据库之间的内在联系。我们可以很清楚地看到大数据和预测分析技术是或者将会成为政府能够采取的最重要的减轻气候变化影响的工具。
如果没有大数据和预测分析,对气候变化政策会有怎样的影响?
毫无疑问,没有大数据和预测分析技术的介入,有关季后变化的政策或者计划将会变得不痛不痒且力度不够深。没有大数据技术发挥作用的话,一些可能出现的场景,即使是出于想象情节,如下所示:
对于全世界有多少碳排放量需要减少的计算结果与实际情况相差甚远。我们想象以下这样的场景,如果城市采取解决方案在未来的5年内将来自所有汽车、空调和工厂的碳排放减少2个百分点,根据现在的情况,实际需要减少的碳排放量为5个百分点。减排量不够意味着全球气温的提升、疾病肆虐以及其他方面的问题。
自从冰川的融化速度开始变得比以往任何时候都要快,海平面的上升速度也在加快。这就让那些沿海城市身处危难的边缘。没有精准的分析和预测的话,房屋迁徙、重建计划以及其他的措施会有所耽搁而且也会不充足。
全球环境变化和生态失衡会进一步被忽视。除非更新以数据为基础的观点,并在正确的论坛上面提出,否则很难形成正确的观点。从数据的角度对环境和生态系统的变化进行比对和分析非常重要。
大数据和预测分析技术对气候变化政策的影响
针对气候变化现象的政策和战略已经受到了来自大数据和预测分析的深刻影响。政府和非政府机构已经在开发引领趋势的工具和技术帮助人们形成高级的行动计划。毋庸置疑,这些工具和技术都是以大数据为基础。每时每刻,关于温度变化、海平面、森林覆盖率以及碳排量的大量数据正在被收集和分析。这些变量数据之间具有内在的相互关联,为我们提供了可执行的洞察、预测以及那些以能够被执行的防御措施和前瞻性为基础的模式。
Surging Sea
它是由Climate Central这样一个非营利的独立组织开发的互动地图。SurgingSeas提供了整个美国关于海平面上升高度的数据信息。你可以用这个地图去发现不同地方的海平面上升的准确高度,查看洪水警告、行动计划、海平面模式、历史数据、嵌入式部件等等。
Google Earth Engine
GoogleEarth Engine的作用就是比较数年或者十几年的环境状态,找出问题所在并提供解决办法。以伊朗的乌尔米咸水湖为例,Google Earth显示在1984年,湖水的颜色为孔雀蓝,几年之后,颜色变成了绿色。到2012年却变成了棕色。同样,亚马逊热带雨林的砍伐现象也被跟踪。Google EarthEngine搜集了来自公开可用卫星图片资料来鉴定全球的环境破坏。
Global Forest Power
这个工具可以帮助你追踪全球森林的覆盖面积。这个工具以交互性地图的方式向用户提供一些关于森林覆盖、任何具体区域的森林砍伐以及森林火灾等信息。
Opower
能源消耗的降低对气候的调节具有非常积极的作用。节能减排的行动必须让全球的每一位市民参与,城镇居民经常会受到他们邻居的能源使用量的影响。Opower是一个分析能源使用情况的专业公司。他们分析民众使用能源的行为模式,并把每家每户能源使用情况的数据报告分发到业主手中,并将业主的数据与邻居的数据进行对比。自从公司在2007年成立以来,已经节省了将近60亿千瓦时的能源,这些节省下来的能源可以满足1百万人口的城市使用一整年。
读而思duersi我们能清楚的看到大数据和预测分析正在重新定义政府的气候变化政策。实际上,大数据看起来是气候变化政策不可或缺的帮手。大数据技术可以处理体量巨大且复杂的环境气候数据,建立有必要的相互联系并提供实时分析。上文提到的所有工具都可以提供实时的数据信息。然而事在人为,大数据能做的就这么多,至于大数据如何才能阻止气候变化的危害,关键还得在于利益相关者是否能够执行具体的行动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29