
大数据预测分析技术如何帮助人类管理环境变化
为了应对气候变化产生的难题,各个国家应该根据精确的、实时的或者近乎实时的分析技术和方法制定卓越的行动计划。大数据和预测分析完全可以提供精准的实时或者近乎实时的分析技术。这些年以来,人们付诸了大量的实践行动,诸如Global Forest Watch、微软研究院的MadingleyModel以及GoogleEarth Engine就是这方面的研究成果。这些软件工具向人们展示了气候变化的速率,因此我们要对此做出快速的应急响应。大数据和预测分析技术可以让各方利益相关者快速处理大量数据信息,并生成准确的洞察。传感器正在搜集降雨、土壤以及森林覆盖率等各种数据变量,并帮助建立数据库之间的内在联系。我们可以很清楚地看到大数据和预测分析技术是或者将会成为政府能够采取的最重要的减轻气候变化影响的工具。
如果没有大数据和预测分析,对气候变化政策会有怎样的影响?
毫无疑问,没有大数据和预测分析技术的介入,有关季后变化的政策或者计划将会变得不痛不痒且力度不够深。没有大数据技术发挥作用的话,一些可能出现的场景,即使是出于想象情节,如下所示:
对于全世界有多少碳排放量需要减少的计算结果与实际情况相差甚远。我们想象以下这样的场景,如果城市采取解决方案在未来的5年内将来自所有汽车、空调和工厂的碳排放减少2个百分点,根据现在的情况,实际需要减少的碳排放量为5个百分点。减排量不够意味着全球气温的提升、疾病肆虐以及其他方面的问题。
自从冰川的融化速度开始变得比以往任何时候都要快,海平面的上升速度也在加快。这就让那些沿海城市身处危难的边缘。没有精准的分析和预测的话,房屋迁徙、重建计划以及其他的措施会有所耽搁而且也会不充足。
全球环境变化和生态失衡会进一步被忽视。除非更新以数据为基础的观点,并在正确的论坛上面提出,否则很难形成正确的观点。从数据的角度对环境和生态系统的变化进行比对和分析非常重要。
大数据和预测分析技术对气候变化政策的影响
针对气候变化现象的政策和战略已经受到了来自大数据和预测分析的深刻影响。政府和非政府机构已经在开发引领趋势的工具和技术帮助人们形成高级的行动计划。毋庸置疑,这些工具和技术都是以大数据为基础。每时每刻,关于温度变化、海平面、森林覆盖率以及碳排量的大量数据正在被收集和分析。这些变量数据之间具有内在的相互关联,为我们提供了可执行的洞察、预测以及那些以能够被执行的防御措施和前瞻性为基础的模式。
Surging Sea
它是由Climate Central这样一个非营利的独立组织开发的互动地图。SurgingSeas提供了整个美国关于海平面上升高度的数据信息。你可以用这个地图去发现不同地方的海平面上升的准确高度,查看洪水警告、行动计划、海平面模式、历史数据、嵌入式部件等等。
Google Earth Engine
GoogleEarth Engine的作用就是比较数年或者十几年的环境状态,找出问题所在并提供解决办法。以伊朗的乌尔米咸水湖为例,Google Earth显示在1984年,湖水的颜色为孔雀蓝,几年之后,颜色变成了绿色。到2012年却变成了棕色。同样,亚马逊热带雨林的砍伐现象也被跟踪。Google EarthEngine搜集了来自公开可用卫星图片资料来鉴定全球的环境破坏。
Global Forest Power
这个工具可以帮助你追踪全球森林的覆盖面积。这个工具以交互性地图的方式向用户提供一些关于森林覆盖、任何具体区域的森林砍伐以及森林火灾等信息。
Opower
能源消耗的降低对气候的调节具有非常积极的作用。节能减排的行动必须让全球的每一位市民参与,城镇居民经常会受到他们邻居的能源使用量的影响。Opower是一个分析能源使用情况的专业公司。他们分析民众使用能源的行为模式,并把每家每户能源使用情况的数据报告分发到业主手中,并将业主的数据与邻居的数据进行对比。自从公司在2007年成立以来,已经节省了将近60亿千瓦时的能源,这些节省下来的能源可以满足1百万人口的城市使用一整年。
读而思duersi我们能清楚的看到大数据和预测分析正在重新定义政府的气候变化政策。实际上,大数据看起来是气候变化政策不可或缺的帮手。大数据技术可以处理体量巨大且复杂的环境气候数据,建立有必要的相互联系并提供实时分析。上文提到的所有工具都可以提供实时的数据信息。然而事在人为,大数据能做的就这么多,至于大数据如何才能阻止气候变化的危害,关键还得在于利益相关者是否能够执行具体的行动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01