
情侣分手大数据:容貌因素36%!
分析了成千上万令人心碎的分手数据后,信息专家大卫·麦克坎德莱斯(David McCandless)和李·拜伦(Lee Byron)发现,恋人分手是可以分析和预测的。
他们的数据来源于美国人口普查局、Facebook上的投票、Twitter、杜蕾斯全球性调查,以及雅虎问答(Yahoo Answers)。
1、婚恋宏观面
在全世界范围,每天约有300万对情侣开始首次约会。以美国为例,每年250万人宣誓结婚,同时超过100万对夫妇离婚,还有,5.4%的美国人一辈子到死都没结过婚。
2、全年分手高峰与低谷
3月:全年最容易分手的高峰时期。出乎意料的是,情人节和春节期间并非情意融融的季节,而是处于攀升分手高峰的趋势中。
春天不是读书天,也不是郎情妾意的好时光。或许因为情人节、春节等节日密集期间容易产生情侣矛盾,导致分手“牛市”在接下来的3月份一触即发。所以,情侣们要在春天要多冷静、多包容。
11月与12月交界:圣诞假期之前,是全年分手另一个高峰。因此,重要假期前后都是情侣们内分泌、肾上腺素等紊乱的期间。所以,假期出没,请注意。
分手频率高的其他时期:愚人节、暑假,以及4、5月间的每个周一。
3、怎么分手
1975年前出生的人:74%是直接说的,当面了结;只有16%人选择通电话“把爱变成往事”。
1984年后出生的人:只有47%面对面说分手,30%的人选择了“电话割爱”,14%的人选择了QQ等即时通讯工具“说拜拜”。另外,5%通过Facebook结束恋情,4%发email来一刀两断。
4、不能说的秘密
全世界47%男性和40%女性曾经有过一夜情。
36%的成年人承认曾因对方的容貌而分手——外貌协会的力量真不容小觑。
56%的成年人表示性生活不和谐。
5、忠诚的真相
全世界22%的婚恋中人曾经出轨。
对婚恋最为不忠的是土耳其人,高达58%的情侣发生过出轨“事故”。接下来是冰岛,这个只有33.2万人口的北欧国家,却有39%的人背叛过对方;第三名是奔放的意大利人——“劈腿”比例为26%;17%的浪漫美国人有外遇史;而被认为保守的英国人,也有14%的不忠率。
在这个“出轨榜单”上,位列第五的是中国香港,11%的香港人曾经是“花心萝卜”。排名第六的是以色列,该指标为7%。
6、TA们为什么分手
出轨:22%的离婚原因是出现了第三者;“小三”也让18%的恋人“走不下去”。
不感兴趣了:28%的情侣因为厌倦而放弃了对方,而26%的夫妇出于“七年之痒”而埋葬了婚姻。
距离:16%的夫妇因为两地分居而“有缘无份”,21%的“异地恋”无疾而终。
3.5%的分手原因是“父母或朋友不赞同”。宁拆十座庙,不毁一桩婚。前辈们可以对别人的婚姻作些“指点”,但不要“指指点点”吧。
2014,爱你一世。能说好不分手吗?
希望这些数据能帮助经营婚恋,让情侣们躲开“分手的地雷”,有情人终成眷属,然后白头到老。
倘若今天的数据不小心成了“分手指南”,我们也只能感得欣慰,并送上祝福。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04