
“土地信息+”能否激发千亿大数据应用市场
一块巨大的农业“互联网+”蛋糕正加速成熟。
农村土地承包经营权确权登记颁证,是农业现代化的基础。2008年,国家选择成都率先开展试点,2015年在四川、山东、安徽整省推进,至今年,在全国的整省推进名单上已有22个省份。这将产生大规模、精细化程度最高的土地信息大数据库。
一个巨大的市场接踵而至——基于土地信息大数据为基础的信息服务。
A “钱景”:
1500亿元大市场,5-10年迎爆点
“现代农业最核心的是数据,土地和人的数字化是基础。”1月13日,西南财大经济信息工程学院副教授罗旭斌开门见山。
在他看来,确权建立起的农场土地信息大数据,是农业最基础的数据,有了数据才能用信息技术精准“重构”传统农业,这是农业的巨大变化。
“确权的下游应用市场空间大概在1500亿元,商机相当广阔。”西南交大信息与技术学院博士李剑波特别强调,这只是这项农业信息化工作本身的投入,其引爆的整个产业链价值则是天文数字。
学计算机的罗旭斌和学地理信息的李剑波合作完成了中国首张现代鱼鳞图——都江堰鹤鸣村土地登记系统绘制,随后成立起集数据、地理信息服务、软件研发等于一体的四川鱼鳞图信息公司,产品和方案被应用于23个省200多个区县,成为行业领跑者之一。
罗旭斌把确权后的拓展应用称为“土地信息+”。在他看来,该领域应用广阔,如土地流转、数字农场、农产品销售、土地金融等社会化服务等环节,将为相关计算机软件、硬件、服务公司带来巨大发展机遇。如现有农产品质量安全追溯体系,精细不足,只有当土地信息数据与溯源公司数据互换,才能真正从餐桌一口气精准追溯到具体某块地头。以前搞土地流转只是本台账,现在土地在哪里有精准定位,将信贷与具体地块吻合,从而化解了银行隐忧。“未来两三年主体数据基本就位,真正有意义的市场化行为的流转应在3年后,5—10年就会迎来‘土地信息+’应用爆发高点。”李剑波预测。
B 困惑:
建数字化农场,商业模式还不成熟
谁会买单?
1月12日,省农业厅与西南交大围绕共建土地信息研究院签定战略合作协议。省农业厅厅长任永昌抛出了当下较为急迫的需求订单:高标准农田建设、土壤普查巩固、耕地质量提升等,都亟待通过基于农村土地信息数据的挖掘应用。 在省农业厅信息中心主任钱亮看来,这种应用挖掘应贯穿于农业生产、经营、管理和服务四大环节,“比如生产环节的物联网技术、经营环节的农村电商等,都与土地信息数据实现嫁接。”
与政府合作是一块大市场,但在李剑波眼里,未来真正的需求更多来自市场,在于日益崛起的新农人们和对农产品质量安全营养等要求愈来愈高的消费者。“核心还是为新农人建立数字化农场。”
全国同行如雨后春笋般出现。作为先行者,李剑波也坦承,目前对于如何精准挖掘应用,暂时毫无突破。“核心难点在于商业模式的设计。”
各地数据库还在建立当中,需求方也仅初具规模,应用突破成为整个行业的共同困惑。鱼鳞图公司今年也曾尝试一些应用新业态,但并未盈利。
C 突破:
政府合理开放数据,避免出现“数据鸿沟”
中科院成都计算机应用研究所高级工程师张炳泉表示,大数据应成为一种支持公众创新创业的公共资源,政府应避免垄断,在厘清权责关系的前提下,将数据向企业和个人开放,并用公信力为交易等应用“背书”。
钱亮也表示,农业大数据是三农公共事业,应在保护国家安全的情况下,有条件地与社会共享,“今后农民工流转出土地外出打工,用APP就能看到自家土地业主拿来种了啥,他有知情权。”
张炳泉看来,政府应从主导者变为服务者,可通过PPP模式等市场化模式与企业共同开发应用。“企业或个人利用大数据对集中起来的土地资源进行更合理的规划利用,实现精细农业、规模生产。”
钱亮强调,政府必须合理地自下而上建立大数据库,同时不能仅局限于土地信息数据库,还应尽快将质量安全信息溯源、农村三资管理、农村电商等方方面面的农业大数据统起来,打通各个环节,建立数据云,才能发挥出精准效应,跨越“数据鸿沟”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29