
大数据产业重在应用 防止盲目建设数据中心
在大数据产业这条起跑线上,中国给予了十足的重视。
据21世纪经济报道梳理,自去年国务院印发《促进大数据发展行动纲要》以来,目前已有23个省出台了74个和大数据相关的政策措施,上海、贵州、重庆、天津出台了大数据发展规划,目前已建的大数据产业园区至少有十余个。
在发展大数据产业过程中如何扬长避短?如何聚焦重点,避免误入歧途?21世纪经济报道专访了国家信息化专家咨询委员会委员、国家信息中心专家委员会主任宁家骏。
我国大数据产业关键技术和支撑环境还存在差距
中国的大数据产业和发达国家相比,处于一个什么样的位置?
我们和发达国家相比,基本上处于一个差不太多的位置,至少没有落后太多。
当前和未来一段时间,我国面临着经济结构转型升级、政府和公共服务改进提升等紧迫任务,这给大数据提供了广阔的应用前景。国家对大数据的认识、我国既有数据的积累,以及应用前景方面,我们都不落后于发达国家。近年来我国大数据发展的宏观政策环境不断完善,地方政府也积极推动大数据发展,整体取得较大的进展。
但同时必须指出,我国在大数据的关键技术和支撑环境来说,还存在差距。
《21世纪》:关键技术和支撑环境方面存在哪些差距?
大数据主要包括四个环节,即“找矿”、“开矿”、“练矿”、“用矿”,现在支撑大数据这四个环节的技术,比如数据采集、清洗、存储、挖掘应用,整体上和发达国家都还存在差距。支撑环境方面,主要是数据的开放共享还有差距,长期以来我们对数据资源统筹不够,缺少法律和机制体制保障。各个部门都用传统的方式自己采集、管理数据,这部分数据又都不愿拿出来和社会共享,这是最主要的问题。
未来5年大数据市场年复合增长率在50%以上
中国大数据从技术到产业,是否已经走出一条成熟的路子?以后的市场规模有多大?
还在探索之中,目前还不能说已经走出一条非常成熟的道路。BAT已经在互联网大数据的分析应用方面有一些很好的尝试,但从更宏观的产业发展上看,我们才刚刚起步。
实际上,现在很多大数据企业并没有和其传统的业务做分离,其业态还处于混沌状态,其提供的产品,比如数据清洗、加工、存储也没有和传统的计算机软硬件技术切割开来。
不过我们要更加关注围绕着数据应用的整个信息服务市场的发展新趋势,将来与大数据相关的信息服务、软件开发、应用集成、数据安全市场将快速增长。预计未来5年,整个大数据市场规模的年复合增长率应该在50%以上,主要原因是现在大数据产业规模的基数还比较小。
地方应警惕盲目建大数据中心
你怎么看当前中国大数据产业的发展路径?
必须强调,中国推动大数据产业,一定要聚焦在应用上,这是大数据产业的核心。大数据的核心说到底是“用”,而不在于数据中心放在哪。
现在各地大力发展数据中心是受旧思想的影响的,他们认为这个数据一定要拢在我这,这是不对的,不等于有了数据中心就有了大数据,大数据产业高端的附加值也不在数据中心这里。在互联网环境中,数据本身应该是开放的,大数据强调的是从数据中提炼价值。
所以我想强调,我们在发展大数据时,千万不能认为发展大数据就是发展大数据中心,盲目地搞大数据产业园。一定要警惕大数据不能泡沫化,形成新的过剩。
现在是否有这样的趋势?
有这个苗头了。全国很多省,甚至很多市都在搞所谓的大数据中心,搞占地很大的大数据产业园,这是很大的风险。同时,不少地方还希望本地也能在短时间生长出一些像BAT一样自己的企业,这明显也是不现实的。
当然并非不让建数据中心,但要根据当地的具体条件来做。现在一些地方只是说他们的能源价格低,电费便宜,其实这些地方建数据中心,还应该将人才、应用等成本考虑进来,否则容易造成盲目性重复建设。对此,我认为有必要引起有关部门、各地以及全社会的警惕。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29