
大数据助力证券业预判未来
上海,我国最具特色的金融中心,其证券市场交易额等单项指标已位列全球前三,有极丰富的金融数据资源;贵州,中国大数据领域的先行者,是国内推动大数据产业发展的重要支撑,已率先启动了全国首个大数据综合试验区建设。
“贵州已经建好了大量数据中心,而上海金融业有大量数据需要储存和重新梳理,两个充满激情和创造力的区域,在大数据和金融领域开展的合作,必将迸发出巨大的商业价值。”信达证券股份有限公司上海分公司副总经理许捷认为,当下,利用大数据发展金融服务和金融创新已经成为一种趋势,作为金融“三杰”的证券业,更渴望大数据助力其预判未来。
尴尬:互联网金融 强势冲击传统金融业
回顾刚刚过去“双12”,支付宝推出首个全球狂欢节,吸引了包括日本、韩国、泰国、新加坡、德国、法国、澳大利亚以及我国港澳台等12个国家和地区的3万家商户参与,涵盖夜市、免税店、百货公司、餐馆、酒吧等多种消费场所。一部手机,行遍天下。互联网金融带给传统金融业的冲击,从线上到了线下。
“互联网带来的便利改变了金融客户的行为习惯,使交易信息透明化,交易成本显著降低。而作为金融业的‘老大哥’,传统银行正从传统业务方式向网络、移动业务转变。”许捷感慨,互联网金融发展的如火如荼,其对传统金融来说,的确带来了巨大的冲击和挑战。证券商亦是如此。
“目前,全行业已经不能再考虑挑战了,而要考虑谁能抓住机遇。”许捷认为,挑战已经清清楚楚很现实的摆在那里,无论你想不想,都需要面对。主动面对才有可能抓住机遇,无论是大券商还是中小型券商,这些都是必须面对和考虑的。这同时也是整个券商行业和金融所需要考虑的。深思熟虑的思考和行动来面对机遇,必然能够带来好的结果。
当然,我们要有一种积极的拥抱的心态才能适应挑战,而不是防范。只有主观上认为是机会,才能考虑投入和合作,才会费尽心思地去想如何抓住机会,如何最大化自己的优势和实现自己的目标,才会有行动和反馈。如果主观上认为威胁,那只会被动的考虑防御,考虑怎么才能避免事情的发生,怎么才能回避或减少。但事实是互联网浪潮已经全面来临,券商已经没有办法回避。所以,我们必须积极地拥抱互联网,融合互联网。
突围:深度数据挖掘 大势所趋
欣然对面互联网金融时代的来临,对于金融业而言,最重要的一步就是利用数据进行“二次掘金”。
“未来,将是大数据引领智慧科技的时代,这也给国内证券公司带来了诸多启示。”许捷表示,大数据时代,券商们开始意会到数据挖掘的迫切性、必要性,券商对于大数据的研究与应用正在紧锣密鼓地进行中。
首先,从技术发展的大环境来看,随着虚拟化技术的深入,数据挖掘技术的不断创新,互联网的发展,为企业大数据挖掘提供了良好的外部环境和技术支持。
其次,从证券业自身发展需求来看,证券业面临行业监管及同业竞争的压力,资产管理、IB以及融资融券等各类新业务的相继推出,对系统及数据管理提出了更高要求。具体表示在:技术层面上,2000年后券商陆续完成了交易大集中,并按需推进建设了业务及管理系统,不断跟进客户的互联网应用需求;业务创新层面上,券商在零售业务、私人业务以及机构业务上的不断创新,一方面产生了大量的业务数据,另一方面对数据挖掘、分析提出了更高要求。大数据时代,对于数据和管理不仅仅停留在某一阶段,而是全周期性管理。
对于大数据的特点,大数据首先是数据量大,其次,海量数据的危机并不单纯是数据量的爆炸性增长,它还牵涉到数据类型的改变。再次,大数据带来的挑战还在于它的实时处理。
对于大数据的作用,大数据时代不一定是对已有客户的价值挖掘,而是要求我们更多从外部价值,对未来做出预测。
展望:大数据助力 证券业预判未来
在互联网金融+大数据时代下,信达证券作了许多尝试。首先,其是第一家推出即时行情网页交易的券商,采用业内领先的W EB版网上交易系统,一改传统交易模式,用户无须下载和安装交易软件,直接登陆信达证券网站即可安全、快速、方便地浏览行情和买卖股票。其次,就在上个月,信达证券发布了大数据告诉你A股的十个秘密规律。
“在我们看来,大数据能够更好的助力证券业预判未来。由此,我们非常看重与贵州的合作。”在许捷看来,贵州发展大数据占据天时地利人和。比如说,随着数据大增长,储存成本将成为金融机构的痛点。一般的企业每年的数据储存量都要增加1倍以上,如何控制储存成本也是一大难题。而为了保障安全,数据中心的地质条件也很重要。
“贵州已经建好了大量数据中心,且当地因海拔相对较高,冬无严寒,夏无酷暑、生态环境好,数据中心散热可以直接换新风。同等条件下,数据中心可以比南方其他地区节约10-30%的用电量,一个标准机架每年可以节电3万度左右。”许捷表示,这些他们都非常看重,因此,下一步打算将数据灾备中心建立在贵州。同时,也将在金融、证券等领域,与贵州加强合作。相信贵州大数据和上海金融,未来发展将前景无限。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18