京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据助力证券业预判未来
上海,我国最具特色的金融中心,其证券市场交易额等单项指标已位列全球前三,有极丰富的金融数据资源;贵州,中国大数据领域的先行者,是国内推动大数据产业发展的重要支撑,已率先启动了全国首个大数据综合试验区建设。
“贵州已经建好了大量数据中心,而上海金融业有大量数据需要储存和重新梳理,两个充满激情和创造力的区域,在大数据和金融领域开展的合作,必将迸发出巨大的商业价值。”信达证券股份有限公司上海分公司副总经理许捷认为,当下,利用大数据发展金融服务和金融创新已经成为一种趋势,作为金融“三杰”的证券业,更渴望大数据助力其预判未来。
尴尬:互联网金融 强势冲击传统金融业
回顾刚刚过去“双12”,支付宝推出首个全球狂欢节,吸引了包括日本、韩国、泰国、新加坡、德国、法国、澳大利亚以及我国港澳台等12个国家和地区的3万家商户参与,涵盖夜市、免税店、百货公司、餐馆、酒吧等多种消费场所。一部手机,行遍天下。互联网金融带给传统金融业的冲击,从线上到了线下。
“互联网带来的便利改变了金融客户的行为习惯,使交易信息透明化,交易成本显著降低。而作为金融业的‘老大哥’,传统银行正从传统业务方式向网络、移动业务转变。”许捷感慨,互联网金融发展的如火如荼,其对传统金融来说,的确带来了巨大的冲击和挑战。证券商亦是如此。
“目前,全行业已经不能再考虑挑战了,而要考虑谁能抓住机遇。”许捷认为,挑战已经清清楚楚很现实的摆在那里,无论你想不想,都需要面对。主动面对才有可能抓住机遇,无论是大券商还是中小型券商,这些都是必须面对和考虑的。这同时也是整个券商行业和金融所需要考虑的。深思熟虑的思考和行动来面对机遇,必然能够带来好的结果。
当然,我们要有一种积极的拥抱的心态才能适应挑战,而不是防范。只有主观上认为是机会,才能考虑投入和合作,才会费尽心思地去想如何抓住机会,如何最大化自己的优势和实现自己的目标,才会有行动和反馈。如果主观上认为威胁,那只会被动的考虑防御,考虑怎么才能避免事情的发生,怎么才能回避或减少。但事实是互联网浪潮已经全面来临,券商已经没有办法回避。所以,我们必须积极地拥抱互联网,融合互联网。
突围:深度数据挖掘 大势所趋
欣然对面互联网金融时代的来临,对于金融业而言,最重要的一步就是利用数据进行“二次掘金”。
“未来,将是大数据引领智慧科技的时代,这也给国内证券公司带来了诸多启示。”许捷表示,大数据时代,券商们开始意会到数据挖掘的迫切性、必要性,券商对于大数据的研究与应用正在紧锣密鼓地进行中。
首先,从技术发展的大环境来看,随着虚拟化技术的深入,数据挖掘技术的不断创新,互联网的发展,为企业大数据挖掘提供了良好的外部环境和技术支持。
其次,从证券业自身发展需求来看,证券业面临行业监管及同业竞争的压力,资产管理、IB以及融资融券等各类新业务的相继推出,对系统及数据管理提出了更高要求。具体表示在:技术层面上,2000年后券商陆续完成了交易大集中,并按需推进建设了业务及管理系统,不断跟进客户的互联网应用需求;业务创新层面上,券商在零售业务、私人业务以及机构业务上的不断创新,一方面产生了大量的业务数据,另一方面对数据挖掘、分析提出了更高要求。大数据时代,对于数据和管理不仅仅停留在某一阶段,而是全周期性管理。
对于大数据的特点,大数据首先是数据量大,其次,海量数据的危机并不单纯是数据量的爆炸性增长,它还牵涉到数据类型的改变。再次,大数据带来的挑战还在于它的实时处理。
对于大数据的作用,大数据时代不一定是对已有客户的价值挖掘,而是要求我们更多从外部价值,对未来做出预测。
展望:大数据助力 证券业预判未来
在互联网金融+大数据时代下,信达证券作了许多尝试。首先,其是第一家推出即时行情网页交易的券商,采用业内领先的W EB版网上交易系统,一改传统交易模式,用户无须下载和安装交易软件,直接登陆信达证券网站即可安全、快速、方便地浏览行情和买卖股票。其次,就在上个月,信达证券发布了大数据告诉你A股的十个秘密规律。
“在我们看来,大数据能够更好的助力证券业预判未来。由此,我们非常看重与贵州的合作。”在许捷看来,贵州发展大数据占据天时地利人和。比如说,随着数据大增长,储存成本将成为金融机构的痛点。一般的企业每年的数据储存量都要增加1倍以上,如何控制储存成本也是一大难题。而为了保障安全,数据中心的地质条件也很重要。
“贵州已经建好了大量数据中心,且当地因海拔相对较高,冬无严寒,夏无酷暑、生态环境好,数据中心散热可以直接换新风。同等条件下,数据中心可以比南方其他地区节约10-30%的用电量,一个标准机架每年可以节电3万度左右。”许捷表示,这些他们都非常看重,因此,下一步打算将数据灾备中心建立在贵州。同时,也将在金融、证券等领域,与贵州加强合作。相信贵州大数据和上海金融,未来发展将前景无限。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29