
纳人:用大数据来招聘到最合适的人才
招聘不是招最优秀的人,而是招最合适的人。纳人坚持的就是如此。
“企业核心就是团队、战略方向和资金,只有一群人能有效组织,搭配合理,企业才能高效运转。这就像齿轮一样,只有合适的尺寸放在一起才可以无消耗运转,不然就算有福利等润滑油,也无济于事。”纳人创始人姜海峰介绍道。
在创立的近一年时间,纳人以在线考评为核心,建立了1000多个维度的考核机制,包括个人性格、行业背景、学习背景等。纳人再根据背后大数据的逻辑来分析评价,为每个企业提供合适的人选。
在此之后,纳人可以提供两种服务,一种是免费的,纳人通过自己建立的模型和人工智能来帮助企业进行职位匹配,筛选那些企业通过各种渠道收集到的各种简历,准确率可以高达90%。
另外一种服务则是人才服务系统,纳人为一些企业提供招聘服务,从精准匹配筛选到最后帮助企业招到合适的人才,这包括筛选简历、匹配简历、电话预约面试、预约到场面试等,时长最短一周,最长两三周。同时纳人收取0.1到0.6的月薪佣金,这大概是猎头服务费的十分之一。
对于个人用户来说,纳人是完全免费的,用户通过手机客户端完成在线考评和信息更新,纳人就会采用区别于传统定制推送的静默式服务,一个月系统自动推送一个适合的职位给个人用户。
同时纳人人才经纪人也会去跟用户联系,一旦用户觉得有更好的发展机会,想变动,就会进行工作机会的撮合。
纳人坚持做的是推动型,而不是鼓动型就业。用户有思考的余地,有合适的机会就可以考虑。尤其是发现职业规划合适、离家近等各方面非常贴切的,就跟用户进行沟通,力争达到双方都满意。
“现在的IT行业,人才的流动基本在一年半到两年之间。虽然不是特别高频的事情,但由于高效,目前也积累到了150万用户,而且这些用户都有完整的简历。”联合创始人李瑛示。
至于盈利模式,纳人打破传统的招聘平台广告付费的模式,而是为效果付费。“我们建立了一个专门的人才经纪服务团队,对每家有招聘需求的企业都会进行深入了解,从创始人到公司的发展历程,熟悉业务和氛围等,列出详细的职位需求表,给用户提供高品质的需求,他们何乐而不为。”
这一切都是通过纳人的技术来实现的。姜海峰表示,“我本人申请的国内外发明专利达17项。我们通过模型和算法筛选简历,看100份简历只需要1分钟即可。目前该模型的智能化程度已经相当于有两三年工作经验的招聘经理。”
、
“我们不是简单的炒概念,创立一年半以来,我们不断投入研发,本身就具有技术壁垒,未来也会保持高速发展。不断优化机器的智能化,与人工的经验水平接近“
在姜海峰看来,传统的猎头不能规模化,猎头都是需要训练的,符号复制。而纳人最大的核心是机器智能,这就相当于猎头的2.0版本,可以复制规模化,效率就回提高很多。
此外,“招聘经理都很难做到5到6年,大部分都会转岗,这部分的价值损失还是很大的。机器就不会有这样的困扰。“
而在谈及跟传统招聘的竞争关系时,他又表示,纳人跟这些企业本质上并不是竞争关系,传统的招聘拼图就是简历和信息的媒介平台,是自由撮合的,最大的问题就是不匹配,纳人正是在解决匹配的痛点和难题。
“就像在割麦子,一个人拿镰刀,现在有收割机,就会更高效。传统招聘平台就像人工割麦子,纳人则像是收割机来割麦子。至少可以提高20%的企业效能。”
目前,纳人服务的主要是包括软件、硬件、互联网等广义上的IT行业,其简历的模型也主要在IT行业通用。之后,将拓展到其他行业,预计将从现在的150万用户拓展到300万用户。
数据显示,纳人目前已经融资两轮,拿到了A轮融资
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29