京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据背书创新加码 借贷宝立体催收让理财无忧
近日,九鼎控股推出理财和借贷相融合的借贷宝App,将熟人间借钱的场景搬到了移动互联网上,为个人间的借贷承诺背书,致力于打造一个“好借好还、再借不难”的健康借贷生态圈,使熟人之间的追款、借钱变得不再那么尴尬、困难。
特别值得一提的是,为保障平台的流程运行、用户的投资无忧,借贷宝建立了极其庞大的“全方位立体催债体系”,为用户提供多层次全方位的保障,力求将出借人债务遭遇违约纠纷的风险降至全网最低。
熟人生态优势
加码“立体催收”
借贷宝产品介绍中显示,目前该平台的全方位追债体系包括催收管理中心、呼叫中心、诉讼中心和遍及各省、市、重点县的合作催收团队。对于逾期未还款的借款人,平台将采取层层递进的立体追债方案替投资人进行追偿。从短信、电话提醒到上门催缴,到申请法院强制执行判决,整个过程中,都有来自顶级律师事务所的法律专家为出借人的催收提供法律支持。
众所周知,银行等传统金融机构借贷模式中,催收的最大难点在于债务人失联。但借贷宝立足于熟人间借贷的商业生态下,债权人就是出借人的朋友,可以看出,这一先天优势极有利于解决违约债权人失联的问题,进而从根本上改善平台催收效果。
分析人士指出,熟人圈子的生态,实际上为借贷宝追债催收体系完备,提供了天然的便利性,因为出借人自身就是“立体追债体系”的一大信源。此前,银行等传统金融机构借贷模式中,催收的最大难点在于债权人失联。而与他们相比,借贷宝的债权人就是出借人的朋友,这一先天优势可以彻底解决失联的问题,从根本上改善平台催收效果。
据借贷宝产品的内部人士透露,目前,他们还在筹备“人人催”平台,将利用互联网众包机制进一步优化解决债务催收问题。
技术模式创新规
避催债尴尬
借贷宝App还独创了单项匿名的借贷方式,利用借款人实名,出借人匿名的模式,有效地化解了传统模式下借贷双方面临的各种催债尴尬。
在借贷宝中产品信息中显示,目前在借贷宝追债流程的设计中,一旦出借人逾期,从逾期当日,直到申请法院强制执行判决期间的各类催收流程,都是由借贷宝平台帮助出借人完成,不会泄露一点儿出借人的个人信息。其间,在借款快到期前,平台将会通过短信的模式提醒借款人准备充足资金,防止逾期,逾期后,违约不还款的借款人会受到来自平台站内信、短信、电话、上门等形式催债,催讨欠款但是并不知道是受谁的委托。
笔者观察到,在借贷宝的追债流程设置当中,有一项是“若逾期超过九十日的,平台将向借款人的全体好友推送违约记录”。借贷宝内部人士解释称,这一条款实际上巧妙地利用了熟人社交关系的“情感胁迫”,朋友圈具有信息互通共享的特性,一旦违约的信息被平台披露出,逾期者在借贷宝的朋友圈里产生信用危机,导致信用破产,令部分有“借钱不还”劣根性的借款人,不得不三思而后行。
三方合力 征信大数据
让“老赖”遁形
借贷宝方面的相关人士介绍,借贷宝App目前所采用的追债催收模式,是该平台依托于九鼎控股丰富的安全风控经验,并结合新的业务模式所独创的创新追债模式。在借贷宝独创的专业追债模型中,包含着来自于企业平台、第三方征信机构、社会法律机构这三股势力的聚合。
首先,借贷宝是借贷的中介平台,债权逾期的风险由出借方自行承担,但借贷宝平台会通过系统化的、专业的催收手段为用户的投资保驾。
其次,据该公司内部消息透露,为了在未来更有效地进行风控管理,借贷宝也在接轨全行业大数据。目前,这一拼图已与上海资信等多家权威安全企业和征信机构进行了深入合作,一旦借款人逾期超过一百五十日,借贷宝将借款人的违约记录上传至中国人民银行下属的上海咨信等征信机构,计入其黑名单,系统,外部使用者可查用。
最后,该平台还为用户提供后期防护,来自知名律所的律师和法院的专家还将全程为出借人的催收提供法律支持。对拒不履行法院生效判决的,借款人将被录入全国法院失信被执行人名单。
业内人士分析认为,这种多维互动的逾期债权催收方式,同步结合了互联网技术创新、金融商业模式创新两大创新加码,并开放对接了全行业的征信大数据以作背书,大大降低了该平台用户的使用风险,不但解决了朋友间借钱“借也不是,不借也不是”的困扰,更令此前诸多存有侥幸心理的欠债不还的朋友,不敢轻易踩越“雷池”,可有效地为平台用户—也就是出借人降低债务坏账风险的发生率,保障其无忧投资,乐享“由钱生钱”的高额利率收益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22