cda

数字化人才认证

首页 > 行业图谱 >

欠拟合与数据预处理的关系
2024-12-05
数据分析中,欠拟合是一种常见问题,指机器学习模型在训练和测试数据上表现不佳,往往由模型过于简单所致。这篇文章将探讨欠拟合与数据预处理之间的关系,以及如何通过合适的方法解决这一挑战。 欠拟合案例分享与影 ...
竞赛中常用的数据预处理方法有哪些?
2023-10-18
数据预处理是在竞赛中非常重要的步骤之一,它对于提高模型的性能和准确度至关重要。 数据清洗:数据清洗是指处理缺失值、异常值和噪声等问题、。常见的处理方法包括删除含有缺失值的样本或特征、使用插补方法填充 ...
数据预处理中最常见的错误有哪些?
2023-10-11
在数据预处理过程中,常见的错误有许多。下面是一些常见的错误和建议的解决方法。 缺失值处理错误:缺失值是数据集中经常遇到的问题。常见的错误包括简单地删除带有缺失值的行或列,或者用一个默认值来 ...
数据预处理中最常见的错误有哪些?
2023-10-08
在数据预处理过程中,常见的错误有许多。下面是一些常见的错误和建议的解决方法。 缺失值处理错误:缺失值是数据集中经常遇到的问题。常见的错误包括简单地删除带有缺失值的行或列,或者用一个默认值来填充缺失值 ...
在SQL中如何实现数据预处理
2023-08-09
数据预处理在SQL中是通过各种技术和方法来准备和清洗数据,以便进行后续分析和建模。这个过程是数据科学和数据分析的关键一步,它有助于提高数据质量、减少错误和不一致性,从而得到更准确、可靠的结果。本文将介绍 ...
如何进行数据预处理和清洗?
2023-06-20
数据预处理和清洗是机器学习和数据分析中非常重要的一步。这个过程涉及到将原始数据转换为可用于建模和分析的格式,包括处理缺失值、异常值、重复值、错误数据等问题。在本文中,我们将介绍数据预处理和清洗的基础概 ...

4000字归纳总结 Pandas+Sklearn 带你做 数据预处理

4000字归纳总结 Pandas+Sklearn 带你做数据预处理
2021-11-24
作者:俊欣 来源:关于数据分析与可视化 今天我们就来讲讲数据预处理过程当中的一些要点与难点。我们大致会提到数据预处理中的 加载数据 处理缺失值如何处理 ...

CDA LEVEL 1 考试,知识点汇总《 数据预处理 方法》

CDA LEVEL 1 考试,知识点汇总《数据预处理方法》
2024-08-13
数据预处理的基本步骤 第一步:数据集成 第二步:数据探索 在进行了基本的了解后,我们还需要把集合中的数据通过一定形式的变换,转换成适合分析和建模的形式。主要的数 ...

 数据预处理 的一些方法

数据预处理的一些方法
2018-03-19
数据预处理的一些方法 现实世界中,数据集存在着不完整、包含噪声和不一致等特点,无法直接用来挖掘知识。收集数据的设备可能出故障,人为输入数据时出错或缺失,数据传输中引起的错误都将造成数据集含有不正确 ...

【CDA干货】神经网络训练误差突然增大?原因、排查与解决方案全解析

【CDA干货】神经网络训练误差突然增大?原因、排查与解决方案全解析
2026-01-05
在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在某一轮骤升,甚至出现NaN(非数字)或无穷大的情况。这种现象不仅会中断训练进程,更 ...

【CDA干货】深度解析用户行为数据价值:从挖掘到落地的全链路指南

【CDA干货】深度解析用户行为数据价值:从挖掘到落地的全链路指南
2026-01-04
在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、复购行为,每一个动作背后都蕴藏着关于用户需求、偏好与痛点的关键信息。用户行为数据 ...

【CDA干货】数据稳定性评估全指南:指标、方法与实操价值

【CDA干货】数据稳定性评估全指南:指标、方法与实操价值
2026-01-04
在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有规律,为预测、优化等决策提供坚实支撑;而不稳定的数据往往夹杂着随机波动、异常干扰 ...

【CDA干货】因子分析核心公式解析:得分系数的推导、应用与实操

【CDA干货】因子分析核心公式解析:得分系数的推导、应用与实操
2025-12-31
在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标,转化为少数几个互不相关的综合因子得分,实现数据降维与核心信息提取。而“得分系数 = ...

【CDA干货】Power BI建模数据预测全指南:从基础搭建到实战落地

【CDA干货】Power BI建模数据预测全指南:从基础搭建到实战落地
2025-12-25
在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势,都能为业务规划提供关键支撑。Power BI作为主流的商业智能工具,不仅具备强大的数据 ...

【CDA干货】Tableau驱动同比环比分析:让数据趋势洞察更高效、决策更精准

【CDA干货】Tableau驱动同比环比分析:让数据趋势洞察更高效、决策更精准
2025-12-19
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响,看清业务长期增长态势;环比(与相邻周期对比)能快速捕捉短期变化,及时发现异常波 ...

CDA数据分析师:用效应分解法,拆解时间序列背后的业务密码

CDA数据分析师:用效应分解法,拆解时间序列背后的业务密码
2025-12-18
在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来自长期趋势的自然提升,还是节日促销的短期刺激?某APP日活用户下降5%,是季节性波动 ...

【CDA干货】超小数据集训练Loss的极限探索:非过拟合前提下的边界与突破

【CDA干货】超小数据集训练Loss的极限探索:非过拟合前提下的边界与突破
2025-12-17
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、工业场景的故障样本、科研中的初期实验数据等,都可能受限于采集成本或样本稀缺性,只 ...

CDA数据分析师:以时间序列为尺,洞察数据动态价值

CDA数据分析师:以时间序列为尺,洞察数据动态价值
2025-12-17
在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台的每小时访问量、金融机构的每分钟交易金额、工厂设备的实时运行参数……这些按时间顺 ...

【CDA干货】标准差/均值>0.5:数据高波动的实用判断标准与应用指南

【CDA干货】标准差/均值>0.5:数据高波动的实用判断标准与应用指南
2025-12-12
在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金经理紧盯收益率波动是否超出风险阈值。但“波动大”不能凭直觉判断,需要量化标准。实 ...

2025 CDA数据分析师认证深植多所高校 赋能数字化人才培养与就业竞争力提升

2025 CDA数据分析师认证深植多所高校 赋能数字化人才培养与就业竞争力提升
2025-12-11
2025年,随着数字经济的蓬勃发展与各行业数字化转型的加速推进,数据分析能力已成为当代人才的核心竞争力之一。在此背景下,CDA(Certified Data Analyst)数据分析师认证体系在全国多所高校实现深度落地,从工科、 ...

OK
客服在线
立即咨询