cda

数字化人才认证

首页 > 行业图谱 >

欠拟合与数据预处理的关系
2024-12-05
数据分析中,欠拟合是一种常见问题,指机器学习模型在训练和测试数据上表现不佳,往往由模型过于简单所致。这篇文章将探讨欠拟合与数据预处理之间的关系,以及如何通过合适的方法解决这一挑战。 欠拟合案例分享与影 ...
竞赛中常用的数据预处理方法有哪些?
2023-10-18
数据预处理是在竞赛中非常重要的步骤之一,它对于提高模型的性能和准确度至关重要。 数据清洗:数据清洗是指处理缺失值、异常值和噪声等问题、。常见的处理方法包括删除含有缺失值的样本或特征、使用插补方法填充 ...
数据预处理中最常见的错误有哪些?
2023-10-11
在数据预处理过程中,常见的错误有许多。下面是一些常见的错误和建议的解决方法。 缺失值处理错误:缺失值是数据集中经常遇到的问题。常见的错误包括简单地删除带有缺失值的行或列,或者用一个默认值来 ...
数据预处理中最常见的错误有哪些?
2023-10-08
在数据预处理过程中,常见的错误有许多。下面是一些常见的错误和建议的解决方法。 缺失值处理错误:缺失值是数据集中经常遇到的问题。常见的错误包括简单地删除带有缺失值的行或列,或者用一个默认值来填充缺失值 ...
在SQL中如何实现数据预处理
2023-08-09
数据预处理在SQL中是通过各种技术和方法来准备和清洗数据,以便进行后续分析和建模。这个过程是数据科学和数据分析的关键一步,它有助于提高数据质量、减少错误和不一致性,从而得到更准确、可靠的结果。本文将介绍 ...
如何进行数据预处理和清洗?
2023-06-20
数据预处理和清洗是机器学习和数据分析中非常重要的一步。这个过程涉及到将原始数据转换为可用于建模和分析的格式,包括处理缺失值、异常值、重复值、错误数据等问题。在本文中,我们将介绍数据预处理和清洗的基础概 ...

4000字归纳总结 Pandas+Sklearn 带你做 数据预处理

4000字归纳总结 Pandas+Sklearn 带你做数据预处理
2021-11-24
作者:俊欣 来源:关于数据分析与可视化 今天我们就来讲讲数据预处理过程当中的一些要点与难点。我们大致会提到数据预处理中的 加载数据 处理缺失值如何处理 ...

CDA LEVEL 1 考试,知识点汇总《 数据预处理 方法》

CDA LEVEL 1 考试,知识点汇总《数据预处理方法》
2024-08-13
数据预处理的基本步骤 第一步:数据集成 第二步:数据探索 在进行了基本的了解后,我们还需要把集合中的数据通过一定形式的变换,转换成适合分析和建模的形式。主要的数 ...

 数据预处理 的一些方法

数据预处理的一些方法
2018-03-19
数据预处理的一些方法 现实世界中,数据集存在着不完整、包含噪声和不一致等特点,无法直接用来挖掘知识。收集数据的设备可能出故障,人为输入数据时出错或缺失,数据传输中引起的错误都将造成数据集含有不正确 ...

【CDA干货】统计模型的核心目的:从数据解读到决策支撑的价值导向

【CDA干货】统计模型的核心目的:从数据解读到决策支撑的价值导向
2025-09-10
统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定目标构建的 “数据 - 逻辑 - 结论” 转化载体。在实际应用中,相同的数据通过不同目的 ...

CDA 数据分析师:商业数据分析实践的落地者与价值创造者

CDA 数据分析师:商业数据分析实践的落地者与价值创造者
2025-09-10
CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分析是 “空中楼阁”,而缺乏专业方法的实践则是 “盲目试错”。CDA(Certified Data Ana ...

CDA 数据分析师:驾驭商业数据分析流程的核心力量

CDA 数据分析师:驾驭商业数据分析流程的核心力量
2025-09-09
CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体流程是 “将数据转化为价值” 的标准化路径,而 CDA(Certified Data Analyst)数据分 ...

【CDA干货】随机森林算法的核心特点:原理、优势与应用解析

【CDA干货】随机森林算法的核心特点:原理、优势与应用解析
2025-09-05
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning)中 Bagging 算法的经典代表,凭借对单决策树缺陷的优化,成为分类、回归任务中的 “万 ...

【CDA干货】机器学习中的参数优化:以预测结果为核心的闭环调优路径

【CDA干货】机器学习中的参数优化:以预测结果为核心的闭环调优路径
2025-08-29
机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关键桥梁 —— 模型参数的合理性直接决定预测精度,而预测结果则是检验参数有效性的唯一 ...

【CDA干货】Power BI 去重函数:数据清洗与精准分析的核心工具

【CDA干货】Power BI 去重函数:数据清洗与精准分析的核心工具
2025-08-27
Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主流的商业智能工具,其内置的去重函数是解决数据重复问题、保障数据准确性的关键手段。 ...

【CDA干货】季节性分解外推法:解锁时间序列预测的规律密码

【CDA干货】季节性分解外推法:解锁时间序列预测的规律密码
2025-08-26
季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键。而时间序列数据(如月度销售额、季度产量、年度能耗)因受多种因素影响,往往呈现复 ...

【CDA干货】PyTorch 矩阵运算加速库:从原理到实践的全面解析

【CDA干货】PyTorch 矩阵运算加速库:从原理到实践的全面解析
2025-08-20
PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的卷积操作(本质是 im2col 变换后的矩阵乘法),还是 Transformer 模型中的注意力计算, ...

【CDA干货】评判两组数据与初始数据准确值的方法

【CDA干货】评判两组数据与初始数据准确值的方法
2025-08-07
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组数据进行评估,判断它们与初始设定的准确值(或真实值)之间的吻合程度。这种评判不仅 ...

【CDA干货】SASEM 决策树:理论与实践应用

【CDA干货】SASEM 决策树:理论与实践应用
2025-08-07
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决策树作为一种融合了统计分析、结构方程模型(SEM)思想与传统决策树优势的分析工具,为 ...

人工智能重塑 CDA 数据分析领域:从工具革新到能力重构

人工智能重塑 CDA 数据分析领域:从工具革新到能力重构
2025-08-12
人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所未有的范式转变。CDA(Certified Data Analyst)作为全球认可度最高的数据分析认证体 ...

OK
客服在线
立即咨询