cda

数字化人才认证

首页 > 行业图谱 >

欠拟合与数据预处理的关系
2024-12-05
数据分析中,欠拟合是一种常见问题,指机器学习模型在训练和测试数据上表现不佳,往往由模型过于简单所致。这篇文章将探讨欠拟合与数据预处理之间的关系,以及如何通过合适的方法解决这一挑战。 欠拟合案例分享与影 ...
竞赛中常用的数据预处理方法有哪些?
2023-10-18
数据预处理是在竞赛中非常重要的步骤之一,它对于提高模型的性能和准确度至关重要。 数据清洗:数据清洗是指处理缺失值、异常值和噪声等问题、。常见的处理方法包括删除含有缺失值的样本或特征、使用插补方法填充 ...
数据预处理中最常见的错误有哪些?
2023-10-11
在数据预处理过程中,常见的错误有许多。下面是一些常见的错误和建议的解决方法。 缺失值处理错误:缺失值是数据集中经常遇到的问题。常见的错误包括简单地删除带有缺失值的行或列,或者用一个默认值来 ...
数据预处理中最常见的错误有哪些?
2023-10-08
在数据预处理过程中,常见的错误有许多。下面是一些常见的错误和建议的解决方法。 缺失值处理错误:缺失值是数据集中经常遇到的问题。常见的错误包括简单地删除带有缺失值的行或列,或者用一个默认值来填充缺失值 ...
在SQL中如何实现数据预处理
2023-08-09
数据预处理在SQL中是通过各种技术和方法来准备和清洗数据,以便进行后续分析和建模。这个过程是数据科学和数据分析的关键一步,它有助于提高数据质量、减少错误和不一致性,从而得到更准确、可靠的结果。本文将介绍 ...
如何进行数据预处理和清洗?
2023-06-20
数据预处理和清洗是机器学习和数据分析中非常重要的一步。这个过程涉及到将原始数据转换为可用于建模和分析的格式,包括处理缺失值、异常值、重复值、错误数据等问题。在本文中,我们将介绍数据预处理和清洗的基础概 ...

4000字归纳总结 Pandas+Sklearn 带你做 数据预处理

4000字归纳总结 Pandas+Sklearn 带你做数据预处理
2021-11-24
作者:俊欣 来源:关于数据分析与可视化 今天我们就来讲讲数据预处理过程当中的一些要点与难点。我们大致会提到数据预处理中的 加载数据 处理缺失值如何处理 ...

CDA LEVEL 1 考试,知识点汇总《 数据预处理 方法》

CDA LEVEL 1 考试,知识点汇总《数据预处理方法》
2024-08-13
数据预处理的基本步骤 第一步:数据集成 第二步:数据探索 在进行了基本的了解后,我们还需要把集合中的数据通过一定形式的变换,转换成适合分析和建模的形式。主要的数 ...

 数据预处理 的一些方法

数据预处理的一些方法
2018-03-19
数据预处理的一些方法 现实世界中,数据集存在着不完整、包含噪声和不一致等特点,无法直接用来挖掘知识。收集数据的设备可能出故障,人为输入数据时出错或缺失,数据传输中引起的错误都将造成数据集含有不正确 ...

【CDA干货】随机森林特征重要性:原理、实操与应用全指南

【CDA干货】随机森林特征重要性:原理、实操与应用全指南
2026-02-12
在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest)作为一种集成学习算法,不仅具备强大的分类与回归能力,还能自动输出各特征的重要性评 ...

描述性统计:CDA数据分析师的入门必修课,让数据特征清晰可落地

描述性统计:CDA数据分析师的入门必修课,让数据特征清晰可落地
2026-02-12
对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的第一道关键桥梁。不同于复杂的推断性统计,描述性统计以“客观描述、概括数据”为核心 ...

【CDA干货】Tableau两表未连接部分显示0而非Null:实操指南(3种方法全覆盖)

【CDA干货】Tableau两表未连接部分显示0而非Null:实操指南(3种方法全覆盖)
2026-02-11
在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消费表”连接统计用户消费,都需要通过关联字段(如产品ID、用户ID)实现两表数据联动。 ...

统计基本概念:CDA数据分析师的实操根基与价值落地

统计基本概念:CDA数据分析师的实操根基与价值落地
2026-02-11
在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关键桥梁。CDA的核心工作并非单纯的“处理数据、制作图表”,而是通过运用统计基本概念, ...

【CDA干货】随机森林特征重要性分析全解析:从原理到实操,解锁特征核心价值

【CDA干货】随机森林特征重要性分析全解析:从原理到实操,解锁特征核心价值
2026-02-06
在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经营的多项指标、医疗诊断的各类特征),我们往往会陷入“特征冗余”的困境:无关特征、 ...

CDA数据分析师:精通表格结构数据核心功能,解锁高效实操新路径

CDA数据分析师:精通表格结构数据核心功能,解锁高效实操新路径
2026-02-06
在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、高效获取、灵活引用、快速查询、精准计算,以及对其各类重要功能的熟练运用,更是CDA夯 ...

【CDA干货】主成分分析(PCA)实战全解析:从原理简化到落地应用

【CDA干货】主成分分析(PCA)实战全解析:从原理简化到落地应用
2026-02-04
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十几个指标;分析用户画像时,会涉及年龄、消费金额、活跃度、留存率等多个维度。这些指 ...

CDA数据分析师:驾驭业务数据分析全步骤,赋能业务高效落地

CDA数据分析师:驾驭业务数据分析全步骤,赋能业务高效落地
2026-02-04
业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、提升经营效能。不同于泛化的数据分析,业务数据分析以“业务需求为导向、落地执行为目 ...

【CDA干货】信贷违约率的统计分布特征与测算方法研究

【CDA干货】信贷违约率的统计分布特征与测算方法研究
2026-02-03
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、风险准备金的计提精度,而科学的测算方法则是确保违约率数据可靠、支撑信贷决策的基础 ...

【CDA干货】复杂抽样的统计描述:方法、要点与实操解析

【CDA干货】复杂抽样的统计描述:方法、要点与实操解析
2026-02-02
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但在实际场景中(如大规模人口调查、分层特征明显的群体研究、区域化数据采集),简单随 ...

CDA数据分析师与商业数据分析总体流程:全链路实操与价值闭环

CDA数据分析师与商业数据分析总体流程:全链路实操与价值闭环
2026-01-30
商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统认证的专业化数据人才,正是串联起商业数据分析全流程、推动每一个环节高效落地的核心 ...

OK
客服在线
立即咨询