cda

数字化人才认证

首页 > 行业图谱 >

欠拟合与数据预处理的关系
2024-12-05
数据分析中,欠拟合是一种常见问题,指机器学习模型在训练和测试数据上表现不佳,往往由模型过于简单所致。这篇文章将探讨欠拟合与数据预处理之间的关系,以及如何通过合适的方法解决这一挑战。 欠拟合案例分享与影 ...
竞赛中常用的数据预处理方法有哪些?
2023-10-18
数据预处理是在竞赛中非常重要的步骤之一,它对于提高模型的性能和准确度至关重要。 数据清洗:数据清洗是指处理缺失值、异常值和噪声等问题、。常见的处理方法包括删除含有缺失值的样本或特征、使用插补方法填充 ...
数据预处理中最常见的错误有哪些?
2023-10-11
在数据预处理过程中,常见的错误有许多。下面是一些常见的错误和建议的解决方法。 缺失值处理错误:缺失值是数据集中经常遇到的问题。常见的错误包括简单地删除带有缺失值的行或列,或者用一个默认值来 ...
数据预处理中最常见的错误有哪些?
2023-10-08
在数据预处理过程中,常见的错误有许多。下面是一些常见的错误和建议的解决方法。 缺失值处理错误:缺失值是数据集中经常遇到的问题。常见的错误包括简单地删除带有缺失值的行或列,或者用一个默认值来填充缺失值 ...
在SQL中如何实现数据预处理
2023-08-09
数据预处理在SQL中是通过各种技术和方法来准备和清洗数据,以便进行后续分析和建模。这个过程是数据科学和数据分析的关键一步,它有助于提高数据质量、减少错误和不一致性,从而得到更准确、可靠的结果。本文将介绍 ...
如何进行数据预处理和清洗?
2023-06-20
数据预处理和清洗是机器学习和数据分析中非常重要的一步。这个过程涉及到将原始数据转换为可用于建模和分析的格式,包括处理缺失值、异常值、重复值、错误数据等问题。在本文中,我们将介绍数据预处理和清洗的基础概 ...

4000字归纳总结 Pandas+Sklearn 带你做 数据预处理

4000字归纳总结 Pandas+Sklearn 带你做数据预处理
2021-11-24
作者:俊欣 来源:关于数据分析与可视化 今天我们就来讲讲数据预处理过程当中的一些要点与难点。我们大致会提到数据预处理中的 加载数据 处理缺失值如何处理 ...

CDA LEVEL 1 考试,知识点汇总《 数据预处理 方法》

CDA LEVEL 1 考试,知识点汇总《数据预处理方法》
2024-08-13
数据预处理的基本步骤 第一步:数据集成 第二步:数据探索 在进行了基本的了解后,我们还需要把集合中的数据通过一定形式的变换,转换成适合分析和建模的形式。主要的数 ...

 数据预处理 的一些方法

数据预处理的一些方法
2018-03-19
数据预处理的一些方法 现实世界中,数据集存在着不完整、包含噪声和不一致等特点,无法直接用来挖掘知识。收集数据的设备可能出故障,人为输入数据时出错或缺失,数据传输中引起的错误都将造成数据集含有不正确 ...

【CDA干货】主成分分析(PCA)实战全解析:从原理简化到落地应用

【CDA干货】主成分分析(PCA)实战全解析:从原理简化到落地应用
2026-02-04
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十几个指标;分析用户画像时,会涉及年龄、消费金额、活跃度、留存率等多个维度。这些指 ...

CDA数据分析师:驾驭业务数据分析全步骤,赋能业务高效落地

CDA数据分析师:驾驭业务数据分析全步骤,赋能业务高效落地
2026-02-04
业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、提升经营效能。不同于泛化的数据分析,业务数据分析以“业务需求为导向、落地执行为目 ...

【CDA干货】信贷违约率的统计分布特征与测算方法研究

【CDA干货】信贷违约率的统计分布特征与测算方法研究
2026-02-03
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、风险准备金的计提精度,而科学的测算方法则是确保违约率数据可靠、支撑信贷决策的基础 ...

【CDA干货】复杂抽样的统计描述:方法、要点与实操解析

【CDA干货】复杂抽样的统计描述:方法、要点与实操解析
2026-02-02
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但在实际场景中(如大规模人口调查、分层特征明显的群体研究、区域化数据采集),简单随 ...

CDA数据分析师与商业数据分析总体流程:全链路实操与价值闭环

CDA数据分析师与商业数据分析总体流程:全链路实操与价值闭环
2026-01-30
商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统认证的专业化数据人才,正是串联起商业数据分析全流程、推动每一个环节高效落地的核心 ...

【CDA干货】通过标准差与平均值关系衡量数据波动性:方法、场景与实操

【CDA干货】通过标准差与平均值关系衡量数据波动性:方法、场景与实操
2026-01-29
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Standard Deviation)是描述数据离散程度的核心指标,平均值(Mean)是反映数据集中趋势的 ...

CDA数据分析师与统计制图:以可视化赋能数据叙事与决策

CDA数据分析师与统计制图:以可视化赋能数据叙事与决策
2026-01-29
统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目了然,是连接数据洞察与业务决策的关键桥梁。CDA(Certified Data Analyst)数据分析 ...

【CDA干货】特征重要性分析:从模型到业务的核心决策依据

【CDA干货】特征重要性分析:从模型到业务的核心决策依据
2026-01-27
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的关键环节。它通过量化各特征对目标变量的影响程度,筛选出核心有效特征,剔除冗余干扰 ...

CDA数据分析师与数据分析基础范式:方法论落地与价值赋能

CDA数据分析师与数据分析基础范式:方法论落地与价值赋能
2026-01-27
数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目标导向,为数据从业者提供了可复用、可迭代的工作准则。CDA(Certified Data Analyst ...

【CDA干货】支持向量机处理非线性问题:核技巧的原理与实践

【CDA干货】支持向量机处理非线性问题:核技巧的原理与实践
2026-01-26
支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本分类、生物信息学等领域。最初的SVM仅能处理线性可分问题,通过寻找最优分类超平面实现 ...

数据分析与CDA数据分析师:核心概念与价值逻辑

数据分析与CDA数据分析师:核心概念与价值逻辑
2026-01-26
在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资源与业务价值的关键纽带。想要深入理解数据驱动的底层逻辑,需先厘清数据分析与CDA数据 ...

OK
客服在线
立即咨询