cda

数字化人才认证

首页 > 行业图谱 >

6种 数据格式 对比,用Jupyter+pandas高效数据分析

6种数据格式对比,用Jupyter+pandas高效数据分析
2020-10-27
编译:刘早起(有删改) 来源:towardsdatascience、GitHub等 在使用python进行数据分析时,Jupyter Notebook是一个非常强力的工具,在数据集不是很大的情况下,我们可以使用pandas轻松对txt或csv等纯文 ...

【CDA干货】流失用户预测建模与原因挖掘:数据挖掘全流程实操指南

【CDA干货】流失用户预测建模与原因挖掘:数据挖掘全流程实操指南
2026-01-09
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户,并找到流失背后的核心原因,进而制定针对性的挽留策略,已成为企业精细化运营的核心诉 ...

【CDA干货】数据库历史数据分析全流程指南:从数据到决策

【CDA干货】数据库历史数据分析全流程指南:从数据到决策
2026-01-08
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度信息。通过科学分析这些历史数据,既能复盘过往业务表现、定位问题根源,也能挖掘潜在 ...

CDA数据分析师实战核心:统计制图的逻辑、方法与价值传递

CDA数据分析师实战核心:统计制图的逻辑、方法与价值传递
2026-01-08
在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通的“画图美化”,统计制图以统计分析逻辑为内核,以数据可视化规则为支撑,将复杂的统 ...

CDA数据分析师实战:可视化驱动的数据探索与统计分析

CDA数据分析师实战:可视化驱动的数据探索与统计分析
2026-01-07
在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专业认证的数据分析从业者,不仅需要掌握严谨的统计分析方法,更要善用可视化工具解锁数 ...

CDA数据分析师实战核心:数据清洗的价值、流程与落地技巧

CDA数据分析师实战核心:数据清洗的价值、流程与落地技巧
2026-01-05
在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题,这些“带病数据”会直接导致分析结论失真、建模效果失效,甚至误导业务决策。CDA(Cer ...

CDA数据分析师核心能力:数据读取的方法、要点与实战应用

CDA数据分析师核心能力:数据读取的方法、要点与实战应用
2026-01-04
在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获取数据原料”,那么数据读取就是“打开原料仓库”的核心动作——只有精准、高效地读取 ...

CDA数据分析师实战核心:数据采集方法全解析与落地应用

CDA数据分析师实战核心:数据采集方法全解析与落地应用
2025-12-31
对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的“第一站”,直接决定了数据的质量、完整性与可用性。在数字化时代,数据来源日益多元 ...

【CDA干货】数据分析师必备工具全解析:从入门到进阶的高效装备清单

【CDA干货】数据分析师必备工具全解析:从入门到进阶的高效装备清单
2025-12-29
数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理,到深度分析、可视化呈现,每个环节都需要适配的工具支撑。不同工具在功能、难度、适用 ...

CDA数据分析师:串联数据仓库与ETL,构建高质量数据价值底座

CDA数据分析师:串联数据仓库与ETL,构建高质量数据价值底座
2025-12-24
在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data Analyst)数据分析师而言,日常工作中频繁面临“数据分散杂乱”“数据质量堪忧”“数据 ...

CDA数据分析师:以数据分类为基,筑牢数据治理与价值挖掘根基

CDA数据分析师:以数据分类为基,筑牢数据治理与价值挖掘根基
2025-12-22
在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分析师在工作中陷入“数据找不准、用不顺、管不好”的困境:想做用户画像却找不到完整的 ...

【CDA干货】数据仓库数据清洗:从“脏数据”到“可信资产”的转化之道

【CDA干货】数据仓库数据清洗:从“脏数据”到“可信资产”的转化之道
2025-12-17
数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模分析、决策支撑都将沦为“沙上建塔”。数据清洗作为数据仓库建设中“承上启下”的关键 ...

【CDA干货】经纬度热力图:从离散坐标到空间密度的可视化方法

【CDA干货】经纬度热力图:从离散坐标到空间密度的可视化方法
2025-12-04
在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景区打卡点、车辆定位)转化为色彩渐变的密度分布图,直观呈现“哪里是热点、哪里是冷区 ...

【CDA干货】从杂乱到清晰:无序数据点的系统分析方法论

【CDA干货】从杂乱到清晰:无序数据点的系统分析方法论
2025-11-28
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时上传的杂乱监测数据……这些数据看似混乱,实则隐藏着业务增长的密码、用户需求的线索 ...

CDA数据分析师:驾驭表格结构数据——从特征洞察到业务价值

CDA数据分析师:驾驭表格结构数据——从特征洞察到业务价值
2025-11-25
在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表,到POS机记录的销售明细表,再到财务系统生成的成本核算表,表格以“行-列”的清晰结 ...

CDA数据分析师:报告呈现的艺术——让数据洞察转化为业务行动

CDA数据分析师:报告呈现的艺术——让数据洞察转化为业务行动
2025-11-24
在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的关键环节。很多分析师能精准完成数据采集、清洗与分析,却在报告呈现上陷入“数据堆砌 ...

【CDA干货】游戏流失预测:解码用户行为序列中的流失信号

【CDA干货】游戏流失预测:解码用户行为序列中的流失信号
2025-11-20
在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从“高频登录”到“间隔变长”,从“付费活跃”到“零消费”,每一步变化都藏在用户行为 ...

【CDA干货】Pyplot树状图:层级数据可视化的技术实现与业务应用

【CDA干货】Pyplot树状图:层级数据可视化的技术实现与业务应用
2025-11-17
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中的决策树模型结果,都需要通过树状图将“父-子”关联关系直观化。matplotlib.pyplot( ...

CDA数据分析师:驾驭商业数据分析总体流程,让数据转化为业务价值

CDA数据分析师:驾驭商业数据分析总体流程,让数据转化为业务价值
2025-11-17
在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营团队的复购率报告与财务数据口径冲突,分析师的洞察建议始终停留在纸面上。这一系列问 ...

【CDA干货】DBeaver实现UAT到SIT表数据同步(同表结构):实操指南

【CDA干货】DBeaver实现UAT到SIT表数据同步(同表结构):实操指南
2025-11-14
在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完全一致。DBeaver作为通用数据库管理工具,无需依赖第三方同步工具,通过其内置功能即 ...

OK
客服在线
立即咨询