cda

数字化人才认证

首页 > 行业图谱 >

数据分析中的缺失值处理
2017-12-01
数据分析中的缺失值处理 没有高质量的数据,就没有高质量的数据挖掘结果,数据值缺失是数据分析中经常遇到的问题之一。当缺失比例很小时,可直接对缺失记录进行舍弃或进行手工处理。但在实际数据中,往往 ...
数据探索之缺失值处理及代码实现
2017-11-30
数据探索之缺失值处理及代码实现 在数据挖掘中,前期数据预处理,会涉及到很多缺失值的处理问题。 现以python代码实现为例,看如何具体处理的。 所需python包 from pandas import Series, DataFrame import pan ...

数据清洗之python实现 缺失值处理

数据清洗之python实现缺失值处理
2020-07-24
在实际的数据清洗过程中,我们经常会遇到数据内容丢失的情况,这些丢失的数据内容就是缺失值。缺失值的产生的原因多种多样,主要分为机械原因和人为原因。 机械原因,也就是由于例如,数据存储失败,存储器损坏 ...
常用的python缺失值处理方法有哪几种?
2020-07-06
缺失值是指粗糙数据中由于缺少信息而造成的数据的聚类、分组、删失或截断。它指的是现有数据集中某个或某些属性的值是不完全的。 python缺失的处理一般情况下有三种方法: (1)删掉缺失值数据 删除法是 ...

数据分析实践入门: 缺失值处理 、重复值处理、异常值处理等

数据分析实践入门:缺失值处理、重复值处理、异常值处理等
2020-05-11
从菜市场买来的菜,总有一些是坏掉的不太好的,所以把菜买回来之后要做一遍预处理,也就是把那些坏掉的不太好的部分扔掉。现实中大部分的数据都类似于菜市场的菜品,拿到手以后会有一些不好的数据,所以都要先做 ...

R语言 缺失值处理

R语言缺失值处理
2017-11-25
R语言缺失值处理 缺失值 1. is.na 确实值位置判断 注意: 缺失值被认为是不可比较的,即便是与缺失值自身的比较。这意味着无法使用比较运算 符来检测缺失值是否存在。例如,逻辑测试myvar == NA的结果永远不会 ...

R语言中的 缺失值处理

R语言中的缺失值处理
2017-02-27
R语言中的缺失值处理 在处理一些真实数据时,样本中往往会包含缺失值(Missing values)。我们需要对缺失值进行适宜的处理,才能建立更为有效的模型,使得后续预测分析能有更小的偏差。本文将罗列不同的缺失值处 ...

CDA数据分析师:数据分析基础范式的践行者与价值放大器

CDA数据分析师:数据分析基础范式的践行者与价值放大器
2025-11-13
在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结果反复推翻”的困境,核心原因在于缺乏统一的“基础范式”作为行动纲领。数据分析基础 ...

【CDA干货】金融统计实战案例:银行个人信贷违约预测的统计分析与风险应用

【CDA干货】金融统计实战案例:银行个人信贷违约预测的统计分析与风险应用
2025-11-11
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的收益波动分析,再到监管合规的数据报送,统计方法是金融机构控制风险、提升收益的核心 ...

【CDA干货】数据挖掘核心步骤与实战:以零售企业客户流失预测为例

【CDA干货】数据挖掘核心步骤与实战:以零售企业客户流失预测为例
2025-11-04
在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升收入、优化体验” 的隐性规律。但数据挖掘并非 “拿到数据就建模” 的无序过程,需遵循 ...

CDA 数据分析师:逻辑回归实战指南 —— 二分类预测与业务决策的核心工具

CDA 数据分析师:逻辑回归实战指南 —— 二分类预测与业务决策的核心工具
2025-10-31
在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户是否会购买产品”“识别交易是否为欺诈”。这类问题无法用预测数值的线性回归解决,而 ...

CDA 数据分析师:数据清洗实战指南 —— 筑牢数据分析的 “质量防线”

CDA 数据分析师:数据清洗实战指南 —— 筑牢数据分析的 “质量防线”
2025-10-23
在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技巧(分析模型),也无法烹制出符合要求的佳肴(可靠结论)。据行业调研显示,CDA(Cert ...

【CDA干货】数据清洗如何守住真实性?从方法到落地的保真指南

【CDA干货】数据清洗如何守住真实性?从方法到落地的保真指南
2025-10-17
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含义。现实中,很多数据清洗操作却走向 “失真陷阱”:比如为了 “数据整齐” 删除真实的 ...

CDA 数据分析师:用效应分解法,剖开时间序列的 “增长密码”

CDA 数据分析师:用效应分解法,剖开时间序列的 “增长密码”
2025-10-09
在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还是 “双 11 促销拉动”,或是 “新用户结构优化带来的增量”?若仅看时间序列的表面变 ...

CDA 数据分析师:读懂时间序列,让历史数据成为业务预测的 “指南针”

CDA 数据分析师:读懂时间序列,让历史数据成为业务预测的 “指南针”
2025-09-30
在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股价波动趋势”,零售门店想确定 “明日库存该备多少”。这些问题的答案,藏在 “时间序 ...

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南
2025-09-29
XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型,但传统决策树存在 “易过拟合、精度有限、对噪声敏感” 等缺陷。而 XGBoost(Extreme ...

CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线”

CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线”
2025-09-26
CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified Data Analyst)数据分析师面临的第一个核心问题。无论是电商平台的用户订单、金融机构 ...

CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者

CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者
2025-09-19
CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字化运营的 “核心载体”,其价值实现依赖 “获取(源头)- 加工(提纯)- 使用(落地) ...

CDA 数据分析师:激活表格结构数据价值的核心操盘手

CDA 数据分析师:激活表格结构数据价值的核心操盘手
2025-09-15
CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 —— 从零售门店的销售明细表,到金融机构的客户信贷记录表,再到互联网平台的用户行为 ...

【CDA干货】Excel 数据聚类分析:从操作实践到业务价值挖掘

【CDA干货】Excel 数据聚类分析:从操作实践到业务价值挖掘
2025-09-10
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖掘隐藏的相似性规律(如用户分群、产品分类、区域特征聚合)。相较于 SPSS、Python 等 ...

OK
客服在线
立即咨询