cda

数字化人才认证

首页 > 行业图谱 >

numpy.einsum如何理解和运用?
2023-04-07
numpy.einsum是NumPy库提供的一个强大的函数,它可以对多维数组进行高效的计算和操作。einsum函数的全称为“Einstein Summation”,它的主要功能是对多个数组进行运算并且输出结果。在这篇文章中,我们将通过介绍ein ...
怎么理解大数据分析师?
2023-04-07
大数据分析师是指能够利用大数据技术和工具,从海量、复杂、多样的数据中提取有价值的信息,为企业或组织提供数据支持和决策建议的专业人才。大数据分析师怎么理解,可以参考以下几个方面: ...
nlp序列标注任务如何处理类别极度不平衡问题?
2023-04-07
自然语言处理(NLP)中的序列标注任务涉及将一系列文本标记为特定类别。 在这种情况下,如果数据集中存在类别不平衡,则可能会影响模型的性能。 对于一个极度不平衡的数据集,即使使用优秀的机器学习算法,也可能会 ...
数据分析师业务理解怎么写?
2023-04-07
数据分析师业务理解是指数据分析师能够从业务的角度,了解数据的来源、质量、影响因素、价值和应用场景,能够根据业务需求设计合理的数据分析方案和指标体系,能够通过数据分析帮助业务部门解决 ...
数据分析师怎么理解?
2023-04-07
数据分析师是一个在数字经济和人工智能时代越来越重要的职业,它是指利用数据分析的方法和技术,从海量的数据中提取有价值的信息,为企业和社会的决策和发展提供支持的专业人才。 数据分析师的工作 ...
如何理解数据分析师?
2023-04-07
数据分析师是指在不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。数据分析师的工作内容和能力要求可能因行业和岗位而异,但一般来说,需要掌握以下几方面 ...
如何理解大数据分析师?
2023-04-07
大数据分析师,顾名思义,就是利用大数据技术和方法来进行数据分析的专业人士。大数据分析师的工作,可以从以下几个方面来理解: 大数据分析师的目标:大数据分析师的目标是利用海量、多样、快速变 ...
怎么理解数据分析师的工作?
2023-04-07
数据分析师的工作,简单来说,就是利用数据来帮助企业或组织解决问题、优化决策、提升效率的工作。具体来说,可以分为以下几个步骤: 明确分析目的:这是数据分析的第一步,也是最重要的一步,需要 ...
怎么理解数据分析师?
2023-04-07
数据分析师,就是利用数据来帮助企业或组织解决问题、优化决策、提升效率的专业人士。数据分析师的工作,可以从以下几个方面来理解: 数据分析师的目标:数据分析师的目标是根据业务部门或客户的需求和 ...
数据分析师需要理解什么?
2023-04-07
数据分析师需要理解的内容主要有以下几个方面: 数据分析的目的和价值:数据分析师需要明确自己的工作是为了什么,数据分析能够为企业和社会带来什么样的价值,如何通过数据分析实现目标或解决问题 ...
数据分析师需要哪些要求?
2023-04-07
数据分析师是一种利用数据来帮助企业或组织解决问题、优化决策、提升效率的职业,需要具备以下几方面的要求: 数据分析能力:这是数据分析师的核心技能,需要掌握数据的收集、清洗、处理、分析、可视化 ...
文科生怎么学数据分析师?
2023-04-07
数据分析师是一个非常有前途的职业,它需要具备数据收集、处理、分析、可视化和报告的能力,以及对业务场景和问题的理解和解决。文科生想要成为数据分析师,可能会面临一些挑战,比如缺乏数学和统计学的基础, ...
数据分析师文科生如何?
2023-04-07
数据分析师是一个非常有前途的职业,需要具备多方面的能力和知识。数据分析师的主要工作是利用数据来发现问题、提供洞察、支持决策、优化流程等。为了做好这些工作,数据分析师需要掌握以下几个方面的技能: ...
文科生如何做数据分析师?
2023-04-07
文科生如何做数据分析师?这是一个很好的问题,因为数据分析师是一个非常有前途的职业,需要具备多方面的能力和知识。数据分析师的主要工作是利用数据来发现问题、提供洞察、支持决策、优化流程等。为了做好这些工 ...

lstm做时间序列预测时间序列长度应该怎么设置?

lstm做时间序列预测时间序列长度应该怎么设置?
2023-04-06
LSTM(Long Short-Term Memory)是一种常用于时间序列预测的神经网络模型。在使用LSTM进行时间序列预测时,要考虑到输入序列和输出序列的长度问题。因为LSTM是一种逐步处理序列数据的模型,输入序列的长度会直接影 ...

xgboost模型训练时需要对类型特征进行one-hot编码吗?

xgboost模型训练时需要对类型特征进行one-hot编码吗?
2023-04-03
XGBoost是一种强大的机器学习算法,广泛应用于数据挖掘和预测建模。在XGBoost模型中,包括许多特征工程技术,例如对类型特征进行编码。在本文中,我们将探讨是否需要对类型特征进行独热编码,并介绍如何使用XGBoos ...
TensorFlow 相较于 Caffe 的优势在哪?
2023-04-03
TensorFlow和Caffe都是深度学习领域中常用的框架之一,它们都可以用来构建深度神经网络模型,训练和部署模型。但是,两者在实现和应用上存在一些区别。在本文中,我们将重点比较TensorFlow和Caffe的优劣,并介绍两种 ...
catboost原理介绍,与lightgbm和xgboost比较优劣?
2023-04-03
CatBoost是一种基于梯度提升树的机器学习算法,它在处理分类和回归问题时都具有优秀的性能。CatBoost最初由Yandex团队开发,在2017年推出,并迅速受到了广泛关注和应用。 CatBoost与LightGBM和XGBoost都属于GBDT(Gr ...

在神经网络中,先进行BatchNorm还是先运行激活函数?

在神经网络中,先进行BatchNorm还是先运行激活函数?
2023-04-03
在神经网络中,BatchNorm(批归一化)和激活函数是两个关键的组成部分,对于它们的顺序,存在不同的观点和实践。本文将从理论和实践两方面探讨这个问题,并提出一个综合考虑的解决方案。 理论分析 BatchNorm ...

用了更多特征,为什么xgboost效果反而变差了?

用了更多特征,为什么xgboost效果反而变差了?
2023-04-03
XGBoost是一种流行的算法,常用于解决回归问题和分类问题。它通过集成多个决策树来提高模型的精度和泛化能力。尽管有时候添加更多的特征可能会改善模型的性能,但有时候它可能会导致模型的性能反而变差。在本文中 ...

OK
客服在线
立即咨询