cda

数字化人才认证

首页 > 行业图谱 >

中级数据科学家如何提高模型精度
2023-10-14
提高模型精度是中级数据科学家在工作中非常重要的任务之一。通过优化模型,我们可以更好地理解和预测数据,并为业务决策提供更准确的指导。下面将介绍一些方法,帮助中级数据科学家提高模型精度。 数据质量与特征 ...

用numpy计算逆矩阵 精度 缺失严重,怎样解决?

用numpy计算逆矩阵精度缺失严重,怎样解决?
2023-04-28
在计算机科学领域中,矩阵是一个非常重要的数学工具,因为它们能够表示许多数据结构和应用。在很多情况下,我们需要对矩阵进行操作,比如求矩阵的逆矩阵,而numpy是一种常用的数值计算库,也提供了对矩阵的支持。 ...
神经网络加上注意力机制,精度反而下降,为什么会这样呢?
2023-03-14
近年来,神经网络和注意力机制的结合已经成为了自然语言处理领域中的研究热点。但是,在实际应用中,有时候我们会发现,当将注意力机制加入到神经网络中时,模型的精度反而下降了。为什么会出现这种情况呢?本文将从 ...

Python双 精度 浮点数运算并分行显示操作示例

Python双精度浮点数运算并分行显示操作示例
2018-06-06
Python双精度浮点数运算并分行显示操作示例 这篇文章主要介绍了Python双精度浮点数运算并分行显示操作,涉及Python数学运算及显示相关操作技巧,注释备有详尽的说明,需要的朋友可以参考下 #coding=utf8 def do ...

关于Python中浮点数 精度 处理的技巧总结

关于Python中浮点数精度处理的技巧总结
2017-10-06
关于Python中浮点数精度处理的技巧总结 前言 最近在使用Python的时候遇到浮点数运算,发现经常会碰到如下情况: 出现上面的情况,主要还是因浮点数在计算机中实际是以二进制保存的,有些数不精确。 ...

【CDA干货】让定量报告“活”起来:可视化易读性提升全指南

【CDA干货】让定量报告“活”起来:可视化易读性提升全指南
2026-01-20
定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹没。可视化作为连接数据与解读的桥梁,能将抽象数值转化为直观图形,降低阅读门槛、强 ...

CDA数据分析师实战:决策树分析的业务应用与落地指南

CDA数据分析师实战:决策树分析的业务应用与落地指南
2026-01-20
在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判断交易是否存在欺诈风险、评估客户授信等级等。决策树(Decision Tree)作为经典的监督 ...

【CDA干货】Python实操:造价清单汇总分类

【CDA干货】Python实操:造价清单汇总分类
2026-01-19
在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶手安装等)的构件,人工汇总不仅效率低下,还易因分项繁杂、数据量大出现漏算、错算问 ...

【CDA干货】流失用户预测建模与原因挖掘:数据挖掘全流程实操指南

【CDA干货】流失用户预测建模与原因挖掘:数据挖掘全流程实操指南
2026-01-09
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户,并找到流失背后的核心原因,进而制定针对性的挽留策略,已成为企业精细化运营的核心诉 ...

【CDA干货】指标波动分析实战指南:从案例拆解到应对策略

【CDA干货】指标波动分析实战指南:从案例拆解到应对策略
2026-01-06
在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常波动,每一次波动背后都隐藏着业务运行的关键信号。指标波动分析的核心价值,就是通过 ...

CDA数据分析师核心技能:特征处理的全流程实战指南

CDA数据分析师核心技能:特征处理的全流程实战指南
2026-01-06
在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模型训练或深度分析——要么特征维度冗余、要么数据分布不均、要么无法精准刻画业务逻辑 ...

CDA数据分析师实战核心:数据清洗的价值、流程与落地技巧

CDA数据分析师实战核心:数据清洗的价值、流程与落地技巧
2026-01-05
在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题,这些“带病数据”会直接导致分析结论失真、建模效果失效,甚至误导业务决策。CDA(Cer ...

【CDA干货】数学界中的统计学高级算法:原理、应用与价值

【CDA干货】数学界中的统计学高级算法:原理、应用与价值
2025-12-26
统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、非线性、异构数据的分析需求。数学界由此衍生出一系列统计学高级算法,这些算法以深厚 ...

CDA数据分析师:以数字化时代数据思维,解锁数据核心价值

CDA数据分析师:以数字化时代数据思维,解锁数据核心价值
2025-12-26
数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CDA(Certified Data Analyst)数据分析师的角色不再是简单的数据整理者,而是企业数字 ...

【CDA干货】一文读懂箱线图上下限:定义、计算方法与实战要点

【CDA干货】一文读懂箱线图上下限:定义、计算方法与实战要点
2025-12-25
箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用于数据分析、质量控制、科学研究等领域。而箱线图的“上下限”(也常被称为须线端点) ...

【CDA干货】Power BI建模数据预测全指南:从基础搭建到实战落地

【CDA干货】Power BI建模数据预测全指南:从基础搭建到实战落地
2025-12-25
在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势,都能为业务规划提供关键支撑。Power BI作为主流的商业智能工具,不仅具备强大的数据 ...

CDA数据分析师:以数据建模为翼,实现从数据解读到业务赋能的跃迁

CDA数据分析师:以数据建模为翼,实现从数据解读到业务赋能的跃迁
2025-12-23
在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转向“通过数据建模挖掘数据深层价值,支撑精准业务决策”。数据建模作为CDA分析师的核心 ...

CDA数据分析师:以数据分类为基,筑牢数据治理与价值挖掘根基

CDA数据分析师:以数据分类为基,筑牢数据治理与价值挖掘根基
2025-12-22
在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分析师在工作中陷入“数据找不准、用不顺、管不好”的困境:想做用户画像却找不到完整的 ...

【CDA干货】数据仓库数据清洗:从“脏数据”到“可信资产”的转化之道

【CDA干货】数据仓库数据清洗:从“脏数据”到“可信资产”的转化之道
2025-12-17
数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模分析、决策支撑都将沦为“沙上建塔”。数据清洗作为数据仓库建设中“承上启下”的关键 ...

【CDA干货】标准差/均值>0.5:数据高波动的实用判断标准与应用指南

【CDA干货】标准差/均值>0.5:数据高波动的实用判断标准与应用指南
2025-12-12
在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金经理紧盯收益率波动是否超出风险阈值。但“波动大”不能凭直觉判断,需要量化标准。实 ...

OK
客服在线
立即咨询