cda

数字化人才认证

首页 > 行业图谱 >

中级数据科学家如何提高模型精度
2023-10-14
提高模型精度是中级数据科学家在工作中非常重要的任务之一。通过优化模型,我们可以更好地理解和预测数据,并为业务决策提供更准确的指导。下面将介绍一些方法,帮助中级数据科学家提高模型精度。 数据质量与特征 ...

用numpy计算逆矩阵 精度 缺失严重,怎样解决?

用numpy计算逆矩阵精度缺失严重,怎样解决?
2023-04-28
在计算机科学领域中,矩阵是一个非常重要的数学工具,因为它们能够表示许多数据结构和应用。在很多情况下,我们需要对矩阵进行操作,比如求矩阵的逆矩阵,而numpy是一种常用的数值计算库,也提供了对矩阵的支持。 ...
神经网络加上注意力机制,精度反而下降,为什么会这样呢?
2023-03-14
近年来,神经网络和注意力机制的结合已经成为了自然语言处理领域中的研究热点。但是,在实际应用中,有时候我们会发现,当将注意力机制加入到神经网络中时,模型的精度反而下降了。为什么会出现这种情况呢?本文将从 ...

Python双 精度 浮点数运算并分行显示操作示例

Python双精度浮点数运算并分行显示操作示例
2018-06-06
Python双精度浮点数运算并分行显示操作示例 这篇文章主要介绍了Python双精度浮点数运算并分行显示操作,涉及Python数学运算及显示相关操作技巧,注释备有详尽的说明,需要的朋友可以参考下 #coding=utf8 def do ...

关于Python中浮点数 精度 处理的技巧总结

关于Python中浮点数精度处理的技巧总结
2017-10-06
关于Python中浮点数精度处理的技巧总结 前言 最近在使用Python的时候遇到浮点数运算,发现经常会碰到如下情况: 出现上面的情况,主要还是因浮点数在计算机中实际是以二进制保存的,有些数不精确。 ...

CDA 数据分析师:逻辑回归实战指南 —— 二分类预测与业务决策的核心工具

CDA 数据分析师:逻辑回归实战指南 —— 二分类预测与业务决策的核心工具
2025-10-31
在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户是否会购买产品”“识别交易是否为欺诈”。这类问题无法用预测数值的线性回归解决,而 ...

【CDA干货】前向神经网络隐藏层与神经元个数的确定:从原理到实操指南

【CDA干货】前向神经网络隐藏层与神经元个数的确定:从原理到实操指南
2025-10-29
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个开发者都会面临的核心决策。这两个参数直接决定了模型的 “容量”—— 即拟合复杂数据 ...

【CDA干货】左尾数据的正态化处理:从识别到落地的完整指南

【CDA干货】左尾数据的正态化处理:从识别到落地的完整指南
2025-10-28
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的有效性、模型的预测精度才能得到保障。但实际业务中,大量数据呈现 “左偏分布”(左 ...

【CDA干货】卷积层之后:归一化与激活函数的取舍之道

【CDA干货】卷积层之后:归一化与激活函数的取舍之道
2025-10-24
在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都会面临的基础决策。这三者的组合并非随意搭配,而是深刻影响模型训练稳定性、收敛速度 ...

【CDA干货】Python 实践:神经网络与卡尔曼滤波融合系统的构建与应用

【CDA干货】Python 实践:神经网络与卡尔曼滤波融合系统的构建与应用
2025-10-23
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、TensorFlow)及数据处理工具,成为实现融合系统的理想选择。本文将以 “无人机姿态估计 ...

【CDA干货】神经网络与卡尔曼滤波的融合:突破传统局限的智能状态估计技术

【CDA干货】神经网络与卡尔曼滤波的融合:突破传统局限的智能状态估计技术
2025-10-23
在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真实状态(如无人机的位置与速度、化工反应釜的温度与压力、汽车的行驶轨迹)。卡尔曼滤 ...

【CDA干货】神经网络越大越好吗?—— 规模选择的辩证思考与实践边界

【CDA干货】神经网络越大越好吗?—— 规模选择的辩证思考与实践边界
2025-10-22
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4,神经网络的规模似乎正朝着 “越大越好” 的方向演进。但事实果真如此吗?神经网络的 ...

【CDA干货】神经网络隐藏层个数怎么确定?从原理到实战的完整指南

【CDA干货】神经网络隐藏层个数怎么确定?从原理到实战的完整指南
2025-10-21
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐藏层 MLP 识别复杂图像),太多则会引发 “过拟合”“训练缓慢”“资源浪费”(如用 1 ...

【CDA干货】偏态分布的置信区间:从原理到实战,破解非对称数据的统计推断难题

【CDA干货】偏态分布的置信区间:从原理到实战,破解非对称数据的统计推断难题
2025-10-20
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集中在几百元)、居民收入水平(高收入群体拉高均值,分布右偏)、产品故障间隔时间(多 ...

【CDA干货】用户行为序列驱动的大模型推理:机制、场景与落地实践

【CDA干货】用户行为序列驱动的大模型推理:机制、场景与落地实践
2025-10-20
在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短视频→停留 3 秒划走→搜索同款→收藏作者”,再到金融 APP 的 “登录→查询余额→浏览 ...

【CDA干货】深度解析 INSERT INTO SELECT 底层原理:从执行流程到性能优化

【CDA干货】深度解析 INSERT INTO SELECT 底层原理:从执行流程到性能优化
2025-10-16
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数据插入到另一个表,无需中间文件中转,广泛应用于数据归档、报表生成、分表同步等场景 ...

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南
2025-10-16
在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这些参数的微小调整都可能显著影响模型的预测精度、泛化能力甚至训练效率。但很多从业者 ...

【CDA干货】神经网络隐藏层层数怎么确定?从原理到实战的完整指南

【CDA干货】神经网络隐藏层层数怎么确定?从原理到实战的完整指南
2025-10-14
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据复杂规律);层数过多,又会导致 “过拟合”(记忆训练噪声)、训练效率低下、梯度消 ...

【CDA干货】SQL Server CONVERT 函数完全指南:语法、场景与实战技巧

【CDA干货】SQL Server CONVERT 函数完全指南:语法、场景与实战技巧
2025-10-10
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转为字符串用于报表展示,亦或是调整字符编码适配不同系统,都离不开专门的转换工具。CON ...

【CDA干货】正交试验无显著结论?原因、排查与优化策略:让 “无结果” 成为有效指导

【CDA干货】正交试验无显著结论?原因、排查与优化策略:让 “无结果” 成为有效指导
2025-10-10
在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为筛选关键影响因素、优化工艺参数的核心工具。但实际操作中,常出现 “试验结束后,通过 ...

OK
客服在线
立即咨询