cda

数字化人才认证

首页 > 行业图谱 >

中级数据科学家如何提高模型精度
2023-10-14
提高模型精度是中级数据科学家在工作中非常重要的任务之一。通过优化模型,我们可以更好地理解和预测数据,并为业务决策提供更准确的指导。下面将介绍一些方法,帮助中级数据科学家提高模型精度。 数据质量与特征 ...

用numpy计算逆矩阵 精度 缺失严重,怎样解决?

用numpy计算逆矩阵精度缺失严重,怎样解决?
2023-04-28
在计算机科学领域中,矩阵是一个非常重要的数学工具,因为它们能够表示许多数据结构和应用。在很多情况下,我们需要对矩阵进行操作,比如求矩阵的逆矩阵,而numpy是一种常用的数值计算库,也提供了对矩阵的支持。 ...
神经网络加上注意力机制,精度反而下降,为什么会这样呢?
2023-03-14
近年来,神经网络和注意力机制的结合已经成为了自然语言处理领域中的研究热点。但是,在实际应用中,有时候我们会发现,当将注意力机制加入到神经网络中时,模型的精度反而下降了。为什么会出现这种情况呢?本文将从 ...

Python双 精度 浮点数运算并分行显示操作示例

Python双精度浮点数运算并分行显示操作示例
2018-06-06
Python双精度浮点数运算并分行显示操作示例 这篇文章主要介绍了Python双精度浮点数运算并分行显示操作,涉及Python数学运算及显示相关操作技巧,注释备有详尽的说明,需要的朋友可以参考下 #coding=utf8 def do ...

关于Python中浮点数 精度 处理的技巧总结

关于Python中浮点数精度处理的技巧总结
2017-10-06
关于Python中浮点数精度处理的技巧总结 前言 最近在使用Python的时候遇到浮点数运算,发现经常会碰到如下情况: 出现上面的情况,主要还是因浮点数在计算机中实际是以二进制保存的,有些数不精确。 ...

【CDA干货】解决 pd.read\_csv 读取长浮点数据的科学计数法问题

【CDA干货】解决 pd.read\_csv 读取长浮点数据的科学计数法问题
2025-09-12
解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题,我将从问题根源切入,先解析科学计数法的触发机制,再系统拆解pd.read_csv参数配置、 ...

【CDA干货】用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南

【CDA干货】用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南
2025-09-11
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验” 的核心纽带 —— 例如订单金额的计算规则、用户等级的判定标准、库存扣减的触发条 ...

【CDA干货】Excel 数据聚类分析:从操作实践到业务价值挖掘

【CDA干货】Excel 数据聚类分析:从操作实践到业务价值挖掘
2025-09-10
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖掘隐藏的相似性规律(如用户分群、产品分类、区域特征聚合)。相较于 SPSS、Python 等 ...

【CDA干货】机器学习解决实际问题的核心关键:从业务到落地的全流程解析

【CDA干货】机器学习解决实际问题的核心关键:从业务到落地的全流程解析
2025-09-09
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于推荐系统、金融风控、工业质检、医疗诊断等领域。然而,并非所有机器学习项目都能实现 ...

【CDA干货】SQL 日期截取:从基础方法到业务实战的全维度解析

【CDA干货】SQL 日期截取:从基础方法到业务实战的全维度解析
2025-09-04
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核心纽带 —— 无论是统计月度销售额、筛选季度活跃用户,还是清洗格式混乱的时间戳,都 ...

【CDA干货】密集连接卷积神经网络(DenseNet):最后归一化的技术价值与实践

【CDA干货】密集连接卷积神经网络(DenseNet):最后归一化的技术价值与实践
2025-09-04
在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连接卷积神经网络(DenseNet),通过 “密集块(Dense Block)” 中相邻层的全连接设计 ...

【CDA干货】机器学习中的参数优化:以预测结果为核心的闭环调优路径

【CDA干货】机器学习中的参数优化:以预测结果为核心的闭环调优路径
2025-08-29
机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关键桥梁 —— 模型参数的合理性直接决定预测精度,而预测结果则是检验参数有效性的唯一 ...

【CDA干货】Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策

【CDA干货】Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策
2025-08-28
Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 —— 无论是电商的客户分层、零售的商品分类,还是教育机构的学员画像构建,都需要通 ...

【CDA干货】基于 SPSS 的 ROC 曲线平滑调整方法与实践指南

【CDA干货】基于 SPSS 的 ROC 曲线平滑调整方法与实践指南
2025-08-25
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具,但其原始曲线常因数据离散性呈现 “锯齿状”,影响视觉解读与诊断阈值判断。本文系统阐 ...

【CDA干货】神经网络隐藏层神经元个数的确定方法与实践

【CDA干货】神经网络隐藏层神经元个数的确定方法与实践
2025-08-25
神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛化能力的关键环节。本文从神经网络的基础结构出发,系统梳理隐藏层神经元个数确定的核 ...

【CDA干货】Power BI 热力地图制作指南:从数据准备到实战分析

【CDA干货】Power BI 热力地图制作指南:从数据准备到实战分析
2025-08-20
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势,成为业务分析中不可或缺的工具。尤其在区域数据对比(如门店销售、用户分布)、异常 ...

【CDA干货】PyTorch 矩阵运算加速库:从原理到实践的全面解析

【CDA干货】PyTorch 矩阵运算加速库:从原理到实践的全面解析
2025-08-20
PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的卷积操作(本质是 im2col 变换后的矩阵乘法),还是 Transformer 模型中的注意力计算, ...

数据建模:CDA 数据分析师的核心驱动力

数据建模:CDA 数据分析师的核心驱动力
2025-08-20
数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分析师作为连接数据与业务的桥梁,通过数据建模技术将碎片化信息转化为战略洞察,推动各 ...

【CDA干货】KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南

【CDA干货】KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南
2025-08-20
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评估体系中,KS 曲线(Kolmogorov-Smirnov Curve)是 “核心标尺” 之一。它通过对比 “ ...

CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察

CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察
2025-08-18
CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数”)往往无法满足业务决策的深度需求。而 SQL 多个聚合函数的组合使用(如同时调用SUM ...

OK
客服在线
立即咨询