cda

数字化人才认证

首页 > 行业图谱 >

12 1/2
卷积神经网络训练图像的时候,像素值都是大于0的,那么激活函数relu还有什么作用呢?
2023-04-13
卷积神经网络(Convolutional Neural Network,CNN)是现代深度学习中最为常用的一种模型,在图像处理、语音识别等领域取得了很多重要的成果。在卷积神经网络的训练过程中,激活函数是一个非常重要的组成部分,其中R ...

LSTM 中为什么要用 tanh  激活函数 ?tanh  激活函数 的作用及优势在哪里?

LSTM 中为什么要用 tanh 激活函数?tanh 激活函数的作用及优势在哪里?
2023-04-07
LSTM是一种常用的循环神经网络架构,它可以有效地解决传统RNN中长序列训练过程中产生的梯度消失和梯度爆炸问题。LSTM通过使用门控机制来控制信息的流动,其中tanh激活函数扮演了重要角色。 tanh激活函数是一种 ...

在神经网络中,先进行BatchNorm还是先运行 激活函数 ?

在神经网络中,先进行BatchNorm还是先运行激活函数
2023-04-03
在神经网络中,BatchNorm(批归一化)和激活函数是两个关键的组成部分,对于它们的顺序,存在不同的观点和实践。本文将从理论和实践两方面探讨这个问题,并提出一个综合考虑的解决方案。 理论分析 BatchNorm ...

卷积神经网络卷积层后一定要跟 激活函数 吗?

卷积神经网络卷积层后一定要跟激活函数吗?
2023-03-30
卷积神经网络(Convolutional Neural Network, CNN)是一种用于图像、音频等数据的深度学习模型。CNN中的卷积层(Convolutional Layer)是其中最重要的组成部分之一,它通过应用卷积核(Kernel)来提取图像中的特征。 ...

神经网络最后一层需要 激活函数 吗?

神经网络最后一层需要激活函数吗?
2023-03-23
神经网络在深度学习领域中是一种非常重要的模型,它可以通过处理大量数据来实现各种任务,如图像识别、语音识别、自然语言处理等。每个神经网络都由多个层组成,其中最后一层通常被称为输出层。但是,许多人对于最 ...

【CDA干货】PyTorch 矩阵运算加速库:从原理到实践的全面解析

【CDA干货】PyTorch 矩阵运算加速库:从原理到实践的全面解析
2025-08-20
PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的卷积操作(本质是 im2col 变换后的矩阵乘法),还是 Transformer 模型中的注意力计算, ...

【CDA干货】反向传播神经网络:突破传统算法瓶颈的革命性力量

【CDA干货】反向传播神经网络:突破传统算法瓶颈的革命性力量
2025-08-07
反向传播神经网络:突破传统算法瓶颈的革命性力量​ 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域。然而,随着数据复杂度的激增和应用场景的深化,传统算法在非线性关系建模、特征提取 ...

【CDA干货】解析 LSTM 训练后输出不确定:成因与破解之道

【CDA干货】解析 LSTM 训练后输出不确定:成因与破解之道
2025-07-29
解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系的独特能力,成为自然语言处理、时间序列预测、语音识别等任务的核心工具。然而,在实 ...

【CDA干货】PyTorch 核心机制:损失函数与反向传播如何驱动模型进化

【CDA干货】PyTorch 核心机制:损失函数与反向传播如何驱动模型进化
2025-07-29
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离不开两大核心引擎:损失函数与反向传播。作为最受欢迎的深度学习框架之一,PyTorch 凭 ...

【CDA干货】解析神经网络中 Softmax 函数的核心作用

【CDA干货】解析神经网络中 Softmax 函数的核心作用
2025-07-29
解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力,使得神经网络能够处理复杂的任务。而 Softmax 函数作为一种常用的激活函数,在神经网 ...
数据分析模型的错误分析与修正
2024-12-06
数据分析模型的构建是一个错综复杂的过程,涉及数据处理、模型训练、误差分析和优化等多个关键环节。在这篇文章中,我们将深入探讨常见的问题及解决方案,以及如何通过错误分析不断完善模型。 数据问题 数据在数据分 ...
每天一个数据分析题(五百零九)- 逻辑回归
2024-08-29
当激活函数为sigmoid时,如何以类神经网络仿真逻辑回归(Logistic Regression)" A.        输入层节点个数设定为3 B.        隐藏层节点个数设定为 ...
数据科学家需要掌握哪些深度学习技能?
2024-06-04
作为数据科学家,深度学习是必不可少的技能之一。深度学习是机器学习领域的一个子领域,通过建立和训练多层神经网络来模拟人类大脑的工作原理。在数据科学的实践中,掌握深度学习技能对于处理复杂的数据和解决现实世 ...
数据分析中常用的人工智能算法有哪些?
2024-05-13
在数据分析领域,人工智能算法扮演着重要的角色。这些算法利用大数据和机器学习技术,帮助我们从海量数据中提取有价值的信息以支持决策和洞察。以下是一些常用的人工智能算法: 逻辑回归(Logistic Regression) ...
如何在深度学习中处理图像和文本数据?
2024-04-15
在深度学习中,处理图像和文本数据是非常重要的任务。随着计算机视觉和自然语言处理领域的快速发展,图像和文本数据已经成为广泛应用于各种领域的主要数据类型。本文将介绍如何使用深度学习方法有效地处理图像和文本 ...
数据挖掘中最常用的算法模型有哪些?
2024-01-30
在数据挖掘领域中,有许多常用的算法模型被广泛应用于数据分析、预测和模式识别等任务。以下是一些最常见的算法模型: 决策树:决策树是一种基于树状结构的分类和回归方法。它通过对数据进行逐步分割来构建一棵树 ...
如何解决梯度消失和梯度爆炸的问题?
2023-11-02
梯度消失和梯度爆炸是深度神经网络训练中常见的问题,它们可能导致模型无法有效学习或训练过程变得不稳定。在本文中,我们将探讨一些解决这些问题的方法。 激活函数选择: 梯度消失和梯度爆炸通常与使用不合适的激 ...
数据挖掘中最常用的算法有哪些?
2023-08-08
在数据挖掘领域,有许多常用的算法可用于发现隐藏在大量数据背后的有价值信息。这些算法能够帮助我们从数据集中提取模式、关联、趋势和规律,以支持决策制定、预测分析和问题解决。本文将介绍数据挖掘中最常用的几种 ...
机器学习模型中的超参数是什么?
2023-07-19
超参数是机器学习模型中的一类参数,它们用于控制模型的训练过程和性能。与模型的权重不同,超参数在训练之前需要手动设置,并且通常在交叉验证或验证集上进行优化。 在机器学习中,超参数的选择对于模型的性能和泛 ...
常用的卷积神经网络模型有哪些?
2023-07-17
常用的卷积神经网络模型有很多,每个模型都有不同的结构和应用领域。以下是一些常见的卷积神经网络模型: LeNet-5:LeNet-5 是最早的卷积神经网络之一,由Yann LeCun等人在1998年提出。它主要应用于手写数字识别, ...
12 1/2

OK
客服在线
立即咨询