cda

数字化人才认证

首页 > 行业图谱 >

神经网络loss值很小,但实际预测结果差很大,有什么原因?

神经网络loss值很小,但实际预测结果差很大,有什么原因?
2023-04-03
神经网络是一种模拟人类神经系统运作的计算模型,可以完成很多复杂的任务,如图像识别、语音识别和自然语言处理等。在训练神经网络时,最重要的指标是损失函数(loss function),用于衡量模型预测结果与真实值之 ...

神经网络训练结果不稳定可能是什么原因?有什么解决办法?

神经网络训练结果不稳定可能是什么原因?有什么解决办法?
2023-04-03
神经网络是一种强大的机器学习模型,可用于各种任务。然而,在训练神经网络时,我们可能会遇到结果不稳定的情况,这意味着在同样的数据集和超参数下,神经网络的性能可能会有很大的差异。本文将探讨神经网络训练结 ...
神经网络的样本为何要增加噪声?
2023-04-03
神经网络是一种模仿生物神经系统运作的计算模型,它可以通过学习和调整自身参数来解决各种复杂问题。在神经网络中,样本是非常重要的,因为它们是神经网络训练的基础。实际上,在神经网络的训练过程中,加入噪声是一 ...

请问rnn和lstm中batchsize和timestep的区别是什么?

请问rnn和lstm中batchsize和timestep的区别是什么?
2023-03-31
RNN和LSTM是常用的深度学习模型,用于处理序列数据。其中,batch size和time step是两个重要的超参数,对模型的训练和性能有着重要的影响。在本文中,我们将探讨RNN和LSTM中batch size和time step的区别以及它们对 ...

卷积神经网络中,那个卷积输出层的通道数(深度)的计算?

卷积神经网络中,那个卷积输出层的通道数(深度)的计算?
2023-03-31
在卷积神经网络中,卷积输出层的通道数(也称为深度或特征图数量)是非常重要的超参数之一。该参数决定了模型最终的学习能力和效果,并且需要根据具体任务来进行调整。 通常情况下,卷积神经网络由多个卷积层和 ...

卷积神经网络可以没有池化层吗?

卷积神经网络可以没有池化层吗?
2023-03-31
卷积神经网络(Convolutional Neural Network,CNN)是一种常用的深度学习算法,广泛应用于计算机视觉和自然语言处理等领域。池化层(Pooling Layer)是CNN中常用的一种层次结构,可以降低数据的空间维度,提高模 ...
xgboost是用二阶泰勒展开的优势在哪?
2023-03-31
XGBoost(eXtreme Gradient Boosting)是一种高效而强大的机器学习算法,它在大规模数据集上的性能表现非常出色。其中,使用二阶泰勒展开是XGBoost的重要优势之一,下面将详细介绍。 首先,我们来了解一下什么是泰勒 ...
如何将卷积神经网络应用在一维时间序列数据上?
2023-03-30
卷积神经网络是一种强大的深度学习模型,通常用于处理图像数据,但它也可以应用于一维时间序列数据。在本文中,我们将探讨如何将卷积神经网络应用于一维时间序列数据,并介绍一些常见的技术和方法。 什么是一维时间 ...
为什么神经网络会存在灾难性遗忘(catastrophic forgetting)这个问题?
2023-03-29
神经网络是一种模拟生物神经系统的计算模型,它具有自适应性和学习能力,可以通过学习来提高其对特定任务或数据的准确性和泛化能力。但是,在神经网络中存在一个严重的问题,那就是灾难性遗忘。 灾难性遗忘是指神经 ...
图神经网络如何在自然语言处理中应用?
2023-03-29
图神经网络是一种新兴的深度学习模型,其可以有效地捕捉非线性关系和复杂数据结构。近年来,图神经网络在自然语言处理领域中得到了广泛应用,特别是在文本分类、命名实体识别、情感分析等任务中取得了很好的效果。 ...

xgboost中的min_child_weight是什么意思?

xgboost中的min_child_weight是什么意思?
2023-03-28
在介绍XGBoost中的min_child_weight之前,先简要介绍一下XGBoost。 XGBoost是一种广泛使用的机器学习算法,被用于各种数据科学任务,例如分类、回归等。它是“Extreme Gradient Boosting”的缩写,是一种决策树 ...
为什么有的神经网络加入注意力机制后效果反而变差了?
2023-03-23
注意力机制是一种在神经网络中应用广泛的技术,能够帮助模型更好地理解输入数据,提高模型的性能和精度。然而,有时候加入注意力机制后模型的效果并没有得到明显的提升,甚至会变差。那么,为什么有的神经网络加入注 ...
神经网络如何进行回归预测?
2023-03-23
神经网络是一种模拟人脑神经元工作方式的机器学习算法,具有强大的非线性建模能力和自适应性。在回归预测问题中,神经网络通常被用来对输入数据进行函数拟合,从而预测相关的输出值。本文将介绍神经网络进行回归预测 ...

神经网络训练时如何找到最优的那个随机种子?

神经网络训练时如何找到最优的那个随机种子?
2023-03-23
在神经网络训练中,随机种子是一个非常重要的超参数,因为它可以影响模型的最终性能。找到一个优秀的随机种子可以提高模型的稳定性和泛化能力。但是,如何找到这个最优的随机种子呢?本文将介绍一些常用的方法。 ...
如何用神经网络实现连续型变量的回归预测?
2023-03-22
神经网络是一种强大的机器学习工具,已被广泛应用于各种预测和分类问题。其中一个常见的应用是使用神经网络进行连续型变量的回归预测。本文将介绍如何使用神经网络完成这个任务。 数据准备 首先,我们需要准备数据 ...
基于深度卷积神经网络进行人脸识别的原理是什么?
2023-03-22
人脸识别是一种常见的生物特征识别技术,它通过计算机视觉技术来识别人脸并将其与已知的人脸进行比对,从而实现身份验证或识别。在过去几年中,深度卷积神经网络(CNN)已经成为人脸识别领域取得重要进展的核心技术 ...
LSTM如何来避免梯度弥散和梯度爆炸?
2023-03-22
LSTM(Long Short-Term Memory)是一种常用的循环神经网络架构,主要应用于序列数据的处理。在训练LSTM模型时,由于网络层数和时间步长的增加,会出现梯度弥散和梯度爆炸的问题。本文将介绍LSTM是如何通过一系列的改 ...
神经网络加上注意力机制,精度反而下降,为什么会这样呢?
2023-03-14
近年来,神经网络和注意力机制的结合已经成为了自然语言处理领域中的研究热点。但是,在实际应用中,有时候我们会发现,当将注意力机制加入到神经网络中时,模型的精度反而下降了。为什么会出现这种情况呢?本文将从 ...
神经网络为什么可以(理论上)拟合任何函数?
2023-03-08
神经网络是一种基于多层非线性变换的模型,由于其强大的拟合能力和广泛的应用,成为了机器学习领域中的热门算法之一。在理论上,神经网络可以拟合任何函数,这得益于神经网络的复杂结构和参数优化方法。 首先,神经 ...

数据分析之数据挖掘入门指南

数据分析之数据挖掘入门指南
2022-10-25
数据分析 探索性数据分析(Exploratory Data Analysis,EDA)是指对已有数据在尽量少的先验假设下通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。 常用的第三方库 ...

OK
客服在线
立即咨询