cda

数字化人才认证

首页 > 行业图谱 >

123456 1/6

spss如何把一个多分类变量改为 二分类 变量?

spss如何把一个多分类变量改为二分类变量?
2023-06-01
SPSS是一款广泛使用的统计软件,它可以方便地对数据进行分析和处理。在数据预处理中,有时需要将一个多分类变量转换为二分类变量,这可以通过SPSS的变量转换功能来实现。本文将介绍如何使用SPSS将一个多分类变量转 ...

使用pytorch 训练一个 二分类 器,训练集的准确率不断提高,但是验证集的准确率却波动很大,这是为啥?

使用pytorch 训练一个二分类器,训练集的准确率不断提高,但是验证集的准确率却波动很大,这是为啥?
2023-04-07
当我们训练机器学习模型时,我们通常会将数据集划分为训练集和验证集。训练集用来训练模型参数,而验证集则用于评估模型的性能和泛化能力。在训练过程中,我们经常会观察到训练集的准确率持续提高,但是验证集的准 ...

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战
2025-10-09
在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 “量化错误”(计算预测值与真实值的差距),反向传播负责 “定位错误来源”(沿着神 ...

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南
2025-09-29
XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型,但传统决策树存在 “易过拟合、精度有限、对噪声敏感” 等缺陷。而 XGBoost(Extreme ...

CDA 数据分析师:精通标签加工方式,让数据标签从 “raw” 到 “ready”

CDA 数据分析师:精通标签加工方式,让数据标签从 “raw” 到 “ready”
2025-09-29
在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加工—— 即将分散的原始数据(如用户行为日志、订单记录)通过清洗、计算、建模等手段, ...

【CDA干货】深度神经网络神经元个数确定指南:从原理到实战的科学路径

【CDA干货】深度神经网络神经元个数确定指南:从原理到实战的科学路径
2025-09-25
深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关键超参数之一 —— 过少的神经元会导致模型 “欠拟合”(无法学习到数据的复杂规律), ...

【CDA干货】统计模型的核心目的:从数据解读到决策支撑的价值导向

【CDA干货】统计模型的核心目的:从数据解读到决策支撑的价值导向
2025-09-10
统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定目标构建的 “数据 - 逻辑 - 结论” 转化载体。在实际应用中,相同的数据通过不同目的 ...

【CDA干货】机器学习解决实际问题的核心关键:从业务到落地的全流程解析

【CDA干货】机器学习解决实际问题的核心关键:从业务到落地的全流程解析
2025-09-09
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于推荐系统、金融风控、工业质检、医疗诊断等领域。然而,并非所有机器学习项目都能实现 ...

【CDA干货】基于 SPSS 的 ROC 曲线平滑调整方法与实践指南

【CDA干货】基于 SPSS 的 ROC 曲线平滑调整方法与实践指南
2025-08-25
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具,但其原始曲线常因数据离散性呈现 “锯齿状”,影响视觉解读与诊断阈值判断。本文系统阐 ...

【CDA干货】K-S 曲线、回归与分类:数据分析中的重要工具

【CDA干货】K-S 曲线、回归与分类:数据分析中的重要工具
2025-08-07
K-S 曲线、回归与分类:数据分析中的重要工具​ 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各自承担着不同的角色,又在实际应用中相互关联、协同作用,共同为数据解读、预测和决策 ...

【CDA干货】鸢尾花判别分析:机器学习中的经典实践案例

【CDA干货】鸢尾花判别分析:机器学习中的经典实践案例
2025-07-29
鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别与分类算法的大门,它就是鸢尾花数据集。鸢尾花判别分析不仅是机器学习入门的绝佳案例 ...

【教程】30000字长文,手把手教你用Python实现统计学

【教程】30000字长文,手把手教你用Python实现统计学
2025-02-27
1.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知识本身难,而是被知识的传播者劝退的。 比如大佬们授课,虽逻辑严谨、思维缜密,但你 ...

常用的非参数检验方法有哪些

常用的非参数检验方法有哪些
2024-12-06
数据分析中,非参数检验方法提供了一种强大工具,可在不依赖于特定总体分布的情况下进行统计推断。这些方法适用于各种领域,包括医学和社会科学,尤其是在处理小样本量或数据类型不清晰的情况下。让我们一起探索常用 ...
非参数检验方法的种类与应用
2024-12-06
在统计学中,非参数检验是一种关键的工具,用于对总体分布未知或不满足参数检验条件的情况下进行推断。相较于参数检验,非参数检验更加灵活,适用范围更广泛,特别适合处理名义或序数数据类型。本文将介绍非参数检验 ...
交叉熵损失函数的梯度下降算法
2024-12-05
在机器学习和深度学习领域,交叉熵损失函数扮演着关键角色,特别是在分类问题中。它不仅被广泛运用于神经网络的训练过程,而且通过衡量模型预测的概率分布与实际标签分布之间的差异,指导着模型参数的优化路径。 交 ...

数据分析师教程《统计学极简入门》第7节 相关性分析

数据分析师教程《统计学极简入门》第7节 相关性分析
2024-10-09
7. 相关性分析 前面的假设检验、方差分析基本上都是围绕差异性分析,不论是单个总体还是两个总体及以上,总之都是属于研究“区别”,从本节开始,我们关注“联系”,变量之间的关系分为 函数关系和相关关系。 本节这 ...

数据分析师是干嘛的?全面揭秘这个职业的真实工作内容

数据分析师是干嘛的?全面揭秘这个职业的真实工作内容
2024-10-12
作者:鱼仔 某中厂老兵|CDA2级持证人|数据践行者 作为一名数据分析师,很多人都会问,数据分析师究竟是干什么的?这个职业表面看上去充满了数字与统计,但其实,它更像是一座桥梁,将数据与企业决策紧密相连 ...

Stata在数据分析中的应用:深入挖掘数据

Stata在数据分析中的应用:深入挖掘数据
2024-08-15
在Stata中,用户可以通过generate命令创建新变量,例如根据现有数据生成分类变量或数值变量。这些新变量可以用于进一步的分析或模型构建。 数据清洗 当涉及多个数据集时,Stata提供了merge命令来合 ...
数据分析中常用的人工智能算法有哪些?
2024-05-13
在数据分析领域,人工智能算法扮演着重要的角色。这些算法利用大数据和机器学习技术,帮助我们从海量数据中提取有价值的信息以支持决策和洞察。以下是一些常用的人工智能算法: 逻辑回归(Logistic Regression) ...
数据分析中常用的机器学习算法有哪些?
2024-05-13
在数据分析领域,机器学习算法是一种重要的工具,可以帮助我们从数据中挖掘模式、进行预测和做出决策。下面将介绍几种常用的机器学习算法。 线性回归(Linear Regression):线性回归是一种用于建立变量之间线性 ...
123456 1/6

OK
客服在线
立即咨询