cda

数字化人才认证

首页 > 行业图谱 >

1234567 1/7

CDA 数据分析师:逻辑回归实战指南 ——  二分类 预测与业务决策的核心工具

CDA 数据分析师:逻辑回归实战指南 —— 二分类预测与业务决策的核心工具
2025-10-31
在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户是否会购买产品”“识别交易是否为欺诈”。这类问题无法用预测数值的线性回归解决,而 ...

spss如何把一个多分类变量改为 二分类 变量?

spss如何把一个多分类变量改为二分类变量?
2023-06-01
SPSS是一款广泛使用的统计软件,它可以方便地对数据进行分析和处理。在数据预处理中,有时需要将一个多分类变量转换为二分类变量,这可以通过SPSS的变量转换功能来实现。本文将介绍如何使用SPSS将一个多分类变量转 ...

使用pytorch 训练一个 二分类 器,训练集的准确率不断提高,但是验证集的准确率却波动很大,这是为啥?

使用pytorch 训练一个二分类器,训练集的准确率不断提高,但是验证集的准确率却波动很大,这是为啥?
2023-04-07
当我们训练机器学习模型时,我们通常会将数据集划分为训练集和验证集。训练集用来训练模型参数,而验证集则用于评估模型的性能和泛化能力。在训练过程中,我们经常会观察到训练集的准确率持续提高,但是验证集的准 ...

【CDA干货】金融统计实战案例:银行个人信贷违约预测的统计分析与风险应用

【CDA干货】金融统计实战案例:银行个人信贷违约预测的统计分析与风险应用
2025-11-11
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的收益波动分析,再到监管合规的数据报送,统计方法是金融机构控制风险、提升收益的核心 ...

【CDA干货】大模型每层神经元个数怎么定?从原理到实操的完整指南

【CDA干货】大模型每层神经元个数怎么定?从原理到实操的完整指南
2025-11-10
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少会导致 “欠拟合”(模型容量不足,无法捕捉复杂规律),个数过多则会引发 “过拟合” ...

【CDA干货】机器学习分类模型:从原理到实战的完整指南

【CDA干货】机器学习分类模型:从原理到实战的完整指南
2025-11-06
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 / 恶性)”,从 “客户流失预测(流失 / 留存)” 到 “图像分类(猫 / 狗 / 汽车)” ...

【CDA干货】交叉频数分布:分类变量的关联放大镜,数据分析的基础核心工具

【CDA干货】交叉频数分布:分类变量的关联放大镜,数据分析的基础核心工具
2025-11-06
在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答:“这两个变量之间有关联吗?”“不同群体在某个特征上的分布有差异吗?”—— 而交叉频 ...

【CDA干货】卡方检验 P 值与 OR 值:从关联判断到强度量化的互补逻辑

【CDA干货】卡方检验 P 值与 OR 值:从关联判断到强度量化的互补逻辑
2025-11-05
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是两个高频但易混淆的指标:有人误将 “P 值小” 等同于 “关联强度大”,也有人忽略 P ...

【CDA干货】数据挖掘核心步骤与实战:以零售企业客户流失预测为例

【CDA干货】数据挖掘核心步骤与实战:以零售企业客户流失预测为例
2025-11-04
在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升收入、优化体验” 的隐性规律。但数据挖掘并非 “拿到数据就建模” 的无序过程,需遵循 ...

【CDA干货】前向神经网络隐藏层与神经元个数的确定:从原理到实操指南

【CDA干货】前向神经网络隐藏层与神经元个数的确定:从原理到实操指南
2025-10-29
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个开发者都会面临的核心决策。这两个参数直接决定了模型的 “容量”—— 即拟合复杂数据 ...

CDA 数据分析师:列联表分析与卡方检验实战指南 —— 破解分类变量的关联密码

CDA 数据分析师:列联表分析与卡方检验实战指南 —— 破解分类变量的关联密码
2025-10-28
在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式偏好”“会员等级是否与复购意愿相关”。这类问题的核心解决方案,正是 “列联表分析 ...

【CDA干货】神经网络隐藏层个数怎么确定?从原理到实战的完整指南

【CDA干货】神经网络隐藏层个数怎么确定?从原理到实战的完整指南
2025-10-21
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐藏层 MLP 识别复杂图像),太多则会引发 “过拟合”“训练缓慢”“资源浪费”(如用 1 ...

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南
2025-10-16
在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这些参数的微小调整都可能显著影响模型的预测精度、泛化能力甚至训练效率。但很多从业者 ...

【CDA干货】神经网络隐藏层层数怎么确定?从原理到实战的完整指南

【CDA干货】神经网络隐藏层层数怎么确定?从原理到实战的完整指南
2025-10-14
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据复杂规律);层数过多,又会导致 “过拟合”(记忆训练噪声)、训练效率低下、梯度消 ...

【CDA干货】机器学习特征重要性分析:原理、实战与业务落地指南

【CDA干货】机器学习特征重要性分析:原理、实战与业务落地指南
2025-10-11
在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模型效率,更能揭示 “哪些因素真正影响目标结果”(如用户流失的核心原因、房价波动的关 ...

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战

【CDA干货】深度学习的核心引擎:损失函数与反向传播的协同原理与实战
2025-10-09
在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 “量化错误”(计算预测值与真实值的差距),反向传播负责 “定位错误来源”(沿着神 ...

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南
2025-09-29
XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型,但传统决策树存在 “易过拟合、精度有限、对噪声敏感” 等缺陷。而 XGBoost(Extreme ...

CDA 数据分析师:精通标签加工方式,让数据标签从 “raw” 到 “ready”

CDA 数据分析师:精通标签加工方式,让数据标签从 “raw” 到 “ready”
2025-09-29
在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加工—— 即将分散的原始数据(如用户行为日志、订单记录)通过清洗、计算、建模等手段, ...

【CDA干货】深度神经网络神经元个数确定指南:从原理到实战的科学路径

【CDA干货】深度神经网络神经元个数确定指南:从原理到实战的科学路径
2025-09-25
深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关键超参数之一 —— 过少的神经元会导致模型 “欠拟合”(无法学习到数据的复杂规律), ...

【CDA干货】统计模型的核心目的:从数据解读到决策支撑的价值导向

【CDA干货】统计模型的核心目的:从数据解读到决策支撑的价值导向
2025-09-10
统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定目标构建的 “数据 - 逻辑 - 结论” 转化载体。在实际应用中,相同的数据通过不同目的 ...
1234567 1/7

OK
客服在线
立即咨询