
大数据正在改变客户服务的五种方式
任何组织的命脉,无论是否面向服务,都是需要为客户提供良好的服务。组织如何与其客户进行互动,会影响他们如何看待组织,这会影响潜在客户,除了组织最忠实的客户之外。
客户服务行业一直依靠数据来提高客户满意度。大数据的进步使他们比以往更容易为他们的客户收集信息。
大数据将在未来几年继续改变客户服务。组织正在依靠数据来了解客户需求,并提供他们所需的解决方案。
客户服务通常被认为是一种义务,有些公司将会极力隐藏用户可以与他们联系的选项。这是一个错误。糟糕的客户服务将会让组织最忠实的客户直接转向组织的竞争对手的怀抱。
理想的情况下,良好的客户服务响应敏捷迅速。幸运的是,更好的客户关系管理(CRM)集成可以减少客户遇到相同事件的次数,从而使企业对自己的需求做出更多的反应。如今的客户服务代表经常感到应该在最初的联系点解决问题。
大数据在客户服务中的作用
以下是大数据改变客户服务的一些方法。
1、访问资源
内部知识库通常具备常见查询的解决方案,可以为通过手机查询的人员提供极好的资源。通过提供客户可能会询问的所有最基本的问题,使客户可以使用这些资源中,并能够帮助减少手机拥塞。
支持工作人员访问特定帐户的注释也可以更好地准备应对重复的问题,使整个组织看起来像是在不断的沟通。
2、提供帮助的辅助功能
组织不要隐藏联系电话和电子邮件地址。隐藏联系人按钮实际上与组织可能想要的结果相反,而不是降低客户服务的成本,组织可能会因为缺乏服务而厌倦,并在其他地方寻求帮助,因此可能会导致收入损失。
那些减少获得支持的人往往会为客户提供充足的资源,这可能是一项重大任务。即使有一个强大的网站充满信息,客户也许不知道看哪些,除非有一个业务需要花时间推销这个资源。
3、改进响应时间
企业减少客户等待时间来获得支持有各种方式。一方面,企业为外包给更大的呼叫中心提供支持,可以提供处理呼叫服务所需的人员。
企业也可能提供多种支持手段,因此更愿意等待支持的人可以尝试电话聊天或电子邮件,而不是电话。这种方便意味着支持代表可以在接听电话同时,可以接收电子邮件并支持某人。
4、同情和怜悯
大量的培训是逐渐升级的问题。耐心是一条漫长的路,但也需要正式的培训。在技术支持方面,行业专家呼吁技术支持代表不要亲自反馈,并提出开放式问题以获得更好的结果。
与客户打交道是很难的,但是客户服务代表是专家。良好的组织提供代表需要利用的培训和言论,以便更快地获得他们正在寻找的答案。
5、预测客户的需求
优质客户服务的最终组成部分是预测客户的需求。换句话说,其目标是为客户提供其无法获得的东西。
良好的企业社会责任感有助于做某些事情可以使客户的生活更轻松,例如降低运输成本或在发生运输错误时提供赠品。而这种成本并不是每个公司都能负担得起,但他们也许能够找到其他方式吸引客户,并感到惊喜。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08