
人工智能时代,程式化的、重复性的、仅靠记忆与练习就可以掌握的技能将是最没有价值的技能,几乎一定可以由机器完成;
相反,那些最能体现人的综合素质的技能,例如:
人对于复杂系统的综合分析、决策能力;
由生活经验及文化熏陶产生的直觉、常识;
基于人自身的情感(爱、恨、热情、冷漠等)与他人互动的能力;
这些是人工智能时代最有价值,最值得培养的技能。
而且,这些技能中,大多数都是因人而异,需要“定制化”的教育或培养,不可能从传统的“批量”教育中获取;
举几个例子:
人类工程师只有去专注计算机、人工智能、程序设计的思想本质,学习如何创造性地设计下一代人工智能系统,或者指导人工智能系统编写最复杂、最有创造力的软件,才可以在未来成为人机协作模式的“人类代表”,多学习机器学习特别是深度学习等未来最有价值的知识;
普通翻译会被取代,但是文学作品的翻译,因为其中涉及到大量人类的情感、审美、创造力、历史文化积淀等,一定是机器翻译无法解决的一个难题;
未来的生产制造业是机器人、智能流水线的天下,人类只有学习更高层次的知识,比如系统设计和质量管控方面,才能体现人类的价值;
未来人们对文化、娱乐的追求会达到一个更高的层次,文娱产业总体规模会是今天的数十倍甚至上百倍。那么,学习文艺创作技巧,用人类独有的智慧、丰富的情感以及对艺术的创造性解读去创作娱乐内容,成为作家、音乐家、电影导演和编剧、游戏设计师等,是证明自己价值最好的方式之一;
科幻作家、雨果奖得主郝景芳说:
很显然,我们需要去重视那些重复性标准化的工作所不能覆盖的领域。
包括什么呢?包括创造性、情感交流、审美、艺术能力,还有我们的综合理解能力、我们把很多碎片连成一个故事这样的讲述能力,我们的体验。
所有这些在我们看来非常不可靠的东西,其实往往是人类只能非常独特的能力。
二、AI时代该如何学习?
学习方法也非常重要,好的学习方法会事半功倍,未来的学习方法包括:主动挑战极限
从实践中学习
关注启发式教育,培养创造力和独立解决问题的能力;
主动向机器学习;
既学习人人协作,也学习人机协作;
学习要追随兴趣;
三、AI时代的教育要关注什么?
未来我们要更关注工作的目标和意义,以及工作背后潜在的社会价值,真正投入到擅长、热爱的领域,要关注以下几个重点问题:
个性化、定制化的教育该如何设计,如何满足不同学生的需要,如何评估定制化教育的效果?
可能需要人工智能技术的帮助,在教学数据被实时采集后,AI技术可以在这个大数据的基础上进行智能分析,帮助人类教育设计者总结得失,监控教学质量,调整课程设计,甚至与人类协作,共同设计新的教学体系
教育如何做到可持续化?最有效的再培训和再教育体系是什么?
未来人们需要大量转换工作,我们的教育体系能否顺利接纳这些人,并帮助他完成再培训?需要社会各层面的积极参与,尤其是社会福利层面的保障
教育体系的设计必须更早、更充分地烤炉全社会的公平性。
在线教育、虚拟现实技术、人工智能技术的组合,也许就是解决教育公平的最佳技术方案
在一个完全定制化的教育体系中,世界上任何一个角落的任何一个学生,都可以根据他的兴趣连接到最适合的老师,享受完全为自己量身定制的课程,得到世界一流的教育。
四、有了AI,人生还有意义吗?
AI时代,机器代劳了一切,我们如何过完一生才最有价值?
会像《机器人总动员》里的人类后代一样懈怠、肥胖吗?
开复老师认为,AI对于人生意义的挑战主要源于人类自身的心理感受。
人之所以为人,正是因为我们有感情、会思考、懂生死。而“感情”“思考”“自我意识”“生死意识”等人类特质,正是需要我们全力培养、发展与珍惜的东西。
不断提高自己,善于利用人类的特长,善于借助机器的能力,这是未来社会里各领域人才的必备特质。
如果不想成为“无用”的人,唯有从现在开始,找到自己的独特之处,拥抱人类的独特价值,成为在情感、性格、素养上都更加全面的人。
AI来了,有思想的人生并不会因此而黯然失色,因为我们全部的尊严就在于思想。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23