京公网安备 11010802034615号
经营许可证编号:京B2-20210330
本次报告是由领英挖掘四大会计师事务所从业者的用户数据,与清华大学学生职业发展指导中心教研室合作分析完成。
报告发现,四大从业者学历偏高,将近一半为研究生及以上学历,超过30%的人有过海外留学经验,超过一半的人为学习工商管理专业出身。在针对年轻一代的四大从业者的分析中,领英发现,90后与85后跳槽频率相比平均值更快,其中90后甚至一年就跳一次槽。选择跳槽的四大从业者更倾向于进入金融、制造与高科技行业。
四大从业近一半为研究生及以上学历
在四大从业者毕业高校分布上,北上广地区财经类院校及传统名校表现抢眼。其中,北京以及上海的院校在占比上尤为突出,两地高校商科师资力量雄厚 ,北上广的学生也有更多了解四大的机会。四大从业者毕业院校排名前三的学校分别为上海财经大学、复旦大学和对外经济贸易大学。
从业者毕业高校百分比排名
进入四大工作必须要有海外留学经验吗?目前看来并不是这样——领英数据显示,四大从业人员中69.65%没有海外留学经历。而在有留学经历的人群中,商科强势的院校学生占比较高。这说明商科培养出来的人才更能满足四大的需求。
从学历来看,四大从业者学历普遍较高,50%为本科学历,将近50%为研究生及以上学历。其中拥有研究生学历的占比35%,拥有MBA学位的占比11% 。
上图为从业者最高学历分布
四大从业者所学专业集中效应非常明显,高达54.4%的从业者是学工商管理专业出身,经济学位列第二,比例为12.7%,排名前十的后八个专业分别为计算机、语言与文学、法律、数学、工业工程与管理科学、电气与电气工程、公共关系与新闻传媒。
从业者最高学历专业分布
90后实习经历多于85后
领英数据显示,四大从业者在进入四大工作前平均拥有1.62份实习工作。90后从业者实习数量明显高于85后——90后四大从业者有过两份以上实习经历的人数占比31.6%,是85后拥有两份实习经历的比例的5倍多。
90后与85后实习数量对比
四大从业者在实习阶段质量普遍偏高,前十大的实习公司多为四大或者金融行业的一流公司。在入职四大前,在四大实习过的人员占四成 。
四大从业者实习前十大公司分布
平均工作13年可当合伙人
和其他行业相比,四大拥有更清晰的晋升机制。通常情况下,普通员工工作大约2年可以迎来一次升职。职位越高升职所需的工作时间也越长。平均来说,坚持工作13年(155.45个月)便有望成为四大合伙人。
90后比85后更爱跳槽
当一部分人选择努力争取晋升机会时,另一部分人则选择了跳槽。领英数据显示,四大员工们平均工作4年之后会选择跳槽。 90后与85后跳槽速度快于平均值,85后大约工作两年便会跳槽,90后平均工作一年就会跳一次槽。
从四大跳槽的从业人员中,只有3.6%的人 会跳向另一家四大公司,绝大多数人选择了跳向四大之外的公司。四大从业者第一次跳槽去向中,占比最大的行业为金融业,制造业、高科技分列二三位。
上图为从业者跳槽行业去向
附:四大从业者跳槽去向行业排名Top4
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07