
作者:丶平凡世界
来源: SQL数据库开发
刚开始工作的时候,经常听同事说在SQL代码的表后面加上WITH(NOLOCK)会好一些,后来仔细研究测试了一下,终于知道为什么了。
那么加与不加到底有什么区别呢?
SQL在每次新建一个查询,就相当于创建了一个会话。在不同的查询窗口操作,会影响到其他会话的查询。当某张表正在写数据时,这时候去查询很可能就会一直处于阻塞状态,哪怕你只是一个很简单的SELECT也会一直等待。
我们这里使用事务来往某张表里写数据,我们知道事务在写完表必须提交(COMMIT)或回滚(ROLLBACK)才能释放表,否则会一直处于阻塞状态。
在插入过程中,我们写一个简单的查询语句,在不添加WITH(NOLOCK)和添加WITH(NOLOCK)的情况下,看会发生什么。
示例数据
如下表A,是我们新建的一个非常简单的表。
下面我们创建一个往里面写数据的事务(使用BEGIN TRAN就可以开始一个事务了)
我们发现有1行受影响了,注意这里的会话ID是59(左上角黄色标签上的数字)
不添加NOLOCK
我们新建一个查询窗口,然后查询A表
从上面的查询可以看到,表A被锁住了,我们的查询一直处于阻塞状态。这里的会话ID是60
这个时候如果你在会话59的窗口执行COMMIT或ROLLBACK,会话60的查询结果会立刻显示出来,这里为了下面的演示我们暂时不提交或回滚。
添加NOLOCK
我们再新建一个查询窗口,还是查询A表,这次我们加上NOLOCK。
注意上图标红色的地方,当前会话ID是55,旁边的60还在执行状态,而我们加了NOLOCK后,瞬间就查询出结果了,而且还把事务里即将要插入的数据给查询到了。这是为什么呢?
事务里的数据虽然还没有提交,但是它实际上已经存在内存里面了,这个时候我们使用NOLOCK查询到的结果,实际上还没存储到硬盘。
从上面的两个测试可以看出,NOLOCK的作用其实就是为了防止查询时被阻塞,只是这样会产生脏读(未提交的数据)。
那么一般什么情况下使用NOLOCK呢?
通常是一些被频繁写的表,不管是插入,更新还是删除。这样的表在查询时,使用NOLOCK是非常有效的。
WITH(NOLOCK)和NOLOCK的区别
不知道小伙伴注意没,我前面介绍时是写的WITH(NOLOCK),但是测试时,使用的是(NOLOCK),它们有什么区别呢?
为了搞清楚WITH(NOLOCK)与NOLOCK的区别,我们先看看下面三个SQL语句有啥区别
SELECT * FROM A NOLOCK SELECT * FROM A (NOLOCK); SELECT * FROM A WITH(NOLOCK);
--这样会提示用错误 select * from [IP].[dbname].dbo.tableName (nolock) --这样就可以 select * from [IP].[dbname].dbo.tableName with(nolock)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08