
折线图大家都能绘制,那么堆积折线图呢?想知道?下面就一起来看如何用matplotlib绘制堆积折线图吧!
一、什么是堆积折线图
堆积折线图一般用于表示每一数值所占大小,随着时间或有序类别的变化而变化的趋势,有可能显示数据点用来表示单个数据值,也可能不显示这些数据点。若有很多类别或数值是近似的,那么就应该使用无数据点堆积折线图。
可以简单理解为:
假如有两个数据系列,在折线图中这两个数据系列是独立的;而在堆积折线图中,第一个数据系列和折线图中显示的是相同的,而第二个数据系列的值要与第一个数据系列的值在同一分类(或时间上)进行累计,这样能够显示出两个数据系列在同一分类(或时间上)的值的总和的发展变化趋势情况。
二、matplotlib绘制堆积折线图
'''堆积折线图''' '''用函数stackplot()绘制堆积折线图''' import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np mpl.rcParams["font.sans-serif"]=["SimHei"] mpl.rcParams["axes.unicode_minus"]=False x=np.arange(1,6,1) y=[0,4,3,5,6] y1=[1,3,4,2,7] y2=[3,4,1,6,5] labels=["BluePlanet","BrownPlanet","GreenPlanet"] colors=["#8da0cb","#fc8d62","#66c2a5"] plt.stackplot(x,y,y1,y2,labels=labels,colors=colors) plt.legend(loc="upper left") plt.show()
'''用函数broken_barh()绘制间断条形图''' plt.broken_barh([(30,100),(180,50),(260,70)],(20,8),facecolors="#1f78b4") plt.broken_barh([(60,90),(190,20),(230,30),(280,60)],(10,8),facecolors=("#7fc97f","#beaed4","#fdc086","#ffff99")) plt.xlim(0,360) plt.ylim(5,35) plt.xlabel("演出时间") plt.yticks([15,25],["歌剧院A","歌剧院B"]) plt.grid(ls='-',lw=1,color="gray") plt.title("不同地区的歌剧院的演出时间比较") plt.show()
'''用step()绘制阶梯图''' x=np.linspace(1,10,10) y=np.sin(x) plt.step(x,y,color="#8dd3c7",where="pre",lw=2) plt.xlim(0,11) plt.ylim(-1.2,1.2) plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18