
折线图大家都能绘制,那么堆积折线图呢?想知道?下面就一起来看如何用matplotlib绘制堆积折线图吧!
一、什么是堆积折线图
堆积折线图一般用于表示每一数值所占大小,随着时间或有序类别的变化而变化的趋势,有可能显示数据点用来表示单个数据值,也可能不显示这些数据点。若有很多类别或数值是近似的,那么就应该使用无数据点堆积折线图。
可以简单理解为:
假如有两个数据系列,在折线图中这两个数据系列是独立的;而在堆积折线图中,第一个数据系列和折线图中显示的是相同的,而第二个数据系列的值要与第一个数据系列的值在同一分类(或时间上)进行累计,这样能够显示出两个数据系列在同一分类(或时间上)的值的总和的发展变化趋势情况。
二、matplotlib绘制堆积折线图
'''堆积折线图''' '''用函数stackplot()绘制堆积折线图''' import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np mpl.rcParams["font.sans-serif"]=["SimHei"] mpl.rcParams["axes.unicode_minus"]=False x=np.arange(1,6,1) y=[0,4,3,5,6] y1=[1,3,4,2,7] y2=[3,4,1,6,5] labels=["BluePlanet","BrownPlanet","GreenPlanet"] colors=["#8da0cb","#fc8d62","#66c2a5"] plt.stackplot(x,y,y1,y2,labels=labels,colors=colors) plt.legend(loc="upper left") plt.show()
'''用函数broken_barh()绘制间断条形图''' plt.broken_barh([(30,100),(180,50),(260,70)],(20,8),facecolors="#1f78b4") plt.broken_barh([(60,90),(190,20),(230,30),(280,60)],(10,8),facecolors=("#7fc97f","#beaed4","#fdc086","#ffff99")) plt.xlim(0,360) plt.ylim(5,35) plt.xlabel("演出时间") plt.yticks([15,25],["歌剧院A","歌剧院B"]) plt.grid(ls='-',lw=1,color="gray") plt.title("不同地区的歌剧院的演出时间比较") plt.show()
'''用step()绘制阶梯图''' x=np.linspace(1,10,10) y=np.sin(x) plt.step(x,y,color="#8dd3c7",where="pre",lw=2) plt.xlim(0,11) plt.ylim(-1.2,1.2) plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25