
文章来源: 丁点帮你
作者:丁点helper
两组独立样本的非参数检验与其t检验相对,主要是用于不满足正态分布的小样本,一般用Wilcoxon秩和检验,又称Mann-Whitney 检验。
这里我们想指出一点的是,人们往往对正态性的关注更多一些,其实样本量也很重要,这里是样本量较小的情形,如果样本量足够大(比如超过40),即使正态性不满足,也可以使用t检验,而且更推荐用t检验。
案例:在某小学随机采集12岁男童和女童各10名的头发样品,检测发样中钙(Ca)含量(μg/g),数据见下表。男童与女童头发中Ca含量有无差异?
上述数据经过正态性检验,P<0.05,此时认为数据不符合正态分布,即男童组与女童组的数据均不服从正态分布;又因为样本量合计仅有20,所以可采用非参数秩和检验。
下面,我们简单说说这其中的基本思想:
和之前讲解的单样本及配对样本秩和检验一致,这里都需要先编制求秩和,然后用秩和进行检验统计量的计算。
比如,随机抽取样本量分别为n1和n2的两个独立样本,要先将全部数据统一编秩,注意是两组混合起来统一编制。
如上表,就是将男童与女童混合在一起进行编制,然后分组计算秩和。
这里,相当于对原始数据进行了秩变换,即用秩数据代替原始数据进行分析,从而不受原始数据需满足正态分布的条件限制。
如果上述女童组的Ca含量原始数据高于男童组,则女童组Ca含量的秩和也大概率会高于男童组。
我们说过,编秩就是数数,这里一共有20个样本,总秩和加起来为210(就是从1加到20:用中学的公式,首位相加乘以项数除以2)。
如果满足假设,两组儿童Ca含量没有差异,那么两组的秩和大概率都等于105(210的一半)。
以上是基本的思路,严格来讲,检验是在计算秩和后,取任意一组样本(如男童)的秩和(R1=77)作为Wilcoxon秩和检验统计量W,在H0假设成立情况下,则W的均数和标准差分别等于:
当W远离其均数时,则有理由拒绝零假设,认为两组有差异。
比如本例W=77(男童的秩和),比 小约2倍标准差:(77-105)/13.229=-2.116,所以,粗略判断,两组数据应该是有差异的。
这里关于W统计量均数和标准差的计算可以不用特别关注,主要是理解整个思想过程,具体的计算都会交由软件来做。
上述案例标准的检验的步骤总结如下:
(1) 建立检验假设,确定检验水准
H0:男童与女童头发中Ca含量的总体分布相同
H1:男童与女童头发中Ca含量的总体分布不同
a=0.05
(2) 编秩、求秩和
先将男童组与女童组发样中Ca含量的数值由小到大统一编秩,将两组秩分别相加得每组秩和。
(3) 计算检验统计量
本例W=77,Z=-2.116。
(4) 确定P值,作出推断
本例P=0.034,按α=0.05 水准拒绝H0 ,接受H1 ,可以认为男童与女童的头发中Ca含量差异有统计学意义。男童组平均秩为77/10=7.7,女童组平均秩为133/10=13.3,可认为女童的头发中Ca含量高于男童。
另外,值得指出的是,在实际应用中,有一些数据是用离散尺度表达的,什么意思?
比如对于疼痛的评分,研究者会将疼痛用0至10个数据表示,0表示无痛、10表示最痛,研究对象需要根据自身的疼痛程度在这11个数字中挑选一个数字代表疼痛程度。
当用此类数据进行秩和检验,常常会出现很多相同秩,这个时候,检验统计量的计算会略有差别,这个大家稍微留意,不过一般统计软件在分析时会自动调整。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26