京公网安备 11010802034615号
经营许可证编号:京B2-20210330
上一篇文章给大家分享了一些关于维度表和事实表的内容,今天给大家带来的是关于维度表技术的一些内容,希望对大家有所帮助。
一、维度表结构
1.每个维度表都包含单一的主键列。
3.维度表通常比较宽,是扁平型非规范表,包含大量的低粒度的文本属性。
二、常见维度表技术
1.维度代理键
DW/BI需要申明对所有的维度的主键的空置,无法采用自然键或者附加日期的自然键。最好是建立无语意的整型主键。
2.自然键、持久键、超自然键
自然键,例如员工编号
持久键,有时也被叫做超自然持久键。数据仓库为员工编号创建一个单一键,这个单一键保持永久性不会发生变化。
最后的持久键应该独立于原始的业务过程。
3.下钻
商业分析的基本方法:
上卷(roll-up):上卷是沿着维的层次向上聚集汇总数据。 例如,对产品销售数据,沿着时间维上卷,可以求出所有产品在所有地区每月 (或季度或年或全部)的销售额。
下探(drill-down):下探是上卷的逆操作,它是沿着维的层次向下,查看更详细的数据。
3.空值属性
推荐采用标识性标识空值,例如unknown。因为不同数据库对空值处理不同。
4.日历日期维度
用YYYYMMdd更容易划分。
5.维度子集
一些需求是不需要最细节的数据的,那么此时事实数据需要关联特定的维度,这些特定维度包含在从细节维度选择的行中,因此就叫做维度子集。
细节维度和维度子集具有相同的属性或内容,具有一致性。
(1)建立包含属性子集的子维度
例如需要上钻到子维度。
(2)建立包含行子集的子维度
在两个维度处于同一细节粒度的情况下,如果其中一个仅仅是行的子集,那么就会产生另外一种一致性维度构造子集。
在某些版本的Hive中,对ORC表使用overwrite会出错,为了保持兼用性,通常会使用truncate 。
(3)使用视图实现维度子集
这种方式存在着两个主要问题:一是新创建的子维度是物理表,因此需要额外的存储空间;二是存在数据不一致的潜在风险。
通常的解决方法是在基本维度上建立视图生成子维度。
优点:
a.可以简单实现,不需要修改原来脚本的逻辑;
b.因为视图不真正存储数据,因此不会占用存储空间;
c.将数据不一致的可能消除掉。
缺点:
a.如果基本维度和子维度表数据量相差悬殊的话,性能比物理表差很多;
b.如果定义视图查询,并且视图很多,可能对元数据存储系统造成压力,严重影响查询性能。
6.层次维度
通常我们使用grouping__id 二进制序列,rollup,collect_set,concat_ws等函数。
层次关系方法:固定深度层次进行分组和钻取查询,递归层次结构数据装载、展开与平面化,多路径层次和参差不齐处理
7.退化维度
除了业务主键外没有其他内容的维度表。
8.杂项维度
包含数据具有很少可能值的维度。有时与其为每个标志或属性定义不同的维度,不如建立单独的讲不同维度合并到一起的杂项维度。
9.维度合并
如果几个相关维度的基数都很小,或者具有多个公共属性时,可以考虑合并。
10.分段维度
包含连续的分段度量值,通常用作客户维度的行为标记时间序列,分析客户行为。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23