
文章来源: Python猫
作者:豌豆花下猫
在 C/C++/Java 等等语言中,整型变量的自增或自减操作是标配,它们又可分为前缀操作(++i 和 --i)与后缀操作(i++ 和 i--),彼此存在着一些细微差别,各有不同的用途。
这些语言的使用者在接触 Python 时,可能会疑惑为什么它不提供 ++ 或 -- 的操作呢?在我前不久发的《Python的十万个为什么?》里,就有不少同学在调查问卷中表示了对此话题感兴趣。
Python 中虽然可能出现 ++i 这种前缀形式的写法,但是它并没有“++”自增操作符,此处只是两个“+”(正数符号)的叠加而已,至于后缀形式的“++”,则完全不支持(SyntaxError: invalid syntax)。
本期“Python为什么”栏目,我们将会从两个主要的角度来回答:Python 为什么不支持 i++ 自增语法?(PS:此处自增指代“自增和自减”,下同)
首先,Python 当然可以实现自增效果,即写成i+=1或者i=i+1,这在其它语言中也是通用的。
虽然 Python 在底层用了不同的魔术方法(__add__()和__iadd__())来完成计算,但表面上的效果完全相同。
所以,我们的问题可以转化成:为什么上面的两种写法会胜过 i++,成为 Python 的最终选择呢?
当我们定义i = 1000时,不同语言会作出不同的处理:
所以当我们令i“自增”时(i=i+1),它们的处理是不同的:
打一个不太恰当的比方:C 中的 i 就像一个宿主,数字 1000 寄生在它上面;而 Python 中的 1000 像个宿主,名称 i 寄生在它上面。C 中的 i 与 Python 中的 1000,它们则寄生在底层的内存空间上……
还可以这样理解:C 中的变量 i 是一等公民,数字 1000 是它的一个可变的属性;Python 中的数字 1000 是一等公民,名称 i 是它的一个可变的属性。
有了以上的铺垫,我们再来看看i++,不难发现:
Python 若支持 i++,其操作过程要比 C 的 i++ 复杂,而且其含义也不再是“令数字增加1”(自增),而是“创建一个新的数字”(新增),这样的话,“自增操作符”(increment operator)就名不副实了。
Python 在理论上可以实现 i++ 操作,但它就必须重新定义“自增操作符”,还会令有其它语言经验的人产生误解,不如就让大家直接写成i += 1或者 i = i + 1好了。
C/C++ 等语言设计出 i++,最主要的目的是为了方便使用三段式的 for 结构:
for(int i = 0; i < 100; i++){ // 执行 xxx }
这种程序关心的是数字本身的自增过程,数字做加法与程序体的执行相关联。
Python 中没有这种 for 结构的写法,它提供了更为优雅的方式:
for i in range(100): # 执行 xxx my_list = ["你好", "我是Python猫", "欢迎关注"] for info in my_list: print(info)
这里体现了不同的思维方式,它关心的是在一个数值范围内的迭代遍历,并不关心也不需要人为对数字做加法。
Python 中的可迭代对象/迭代器/生成器提供了非常良好的迭代/遍历用法,能够做到对 i++ 的完全替代。
例如,上例中实现了对列表内值的遍历,Python 还可以用 enumerate() 实现对下标与具体值的同时遍历:
my_list = ["你好", "我是Python猫", "欢迎关注"] for i, info in enumerate(my_list): print(i, info) # 打印结果: 0 你好 1 我是Python猫 2 欢迎关注
再例如对于字典的遍历,Python 提供了 keys()、values()、items() 等遍历方法,非常好用:
my_dict = {'a': '1', 'b': '2', 'c': '3'} for key in my_dict.keys(): print(key) for key, value in my_dict.items(): print(key, value)
有了这样的利器,哪里还有 i++ 的用武之地呢?
不仅如此,Python 中基本上很少使用i += 1或者 i = i + 1,由于存在着随处可见的可迭代对象,开发者们很容易实现对一个数值区间的操作,也就很少有对于某个数值作累加的诉求了。
所以,回到我们开头的问题,其实这两种“自增”写法并没有胜出 i++ 多少,只因为它们是通用型操作,又不需要引入新的操作符,所以 Python 才延续了一种基础性的支持。真正的赢家其实是各种各样的可迭代对象!
稍微小结下:Python 不支持自增操作符,一方面是因为它的整数是不可变类型的一等公民,自增操作(++)若要支持,则会带来歧义;另一方面主要因为它有更合适的实现,即可迭代对象,对遍历操作有很好的支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12